scholarly journals Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification

Author(s):  
Tianyu Gao ◽  
Xu Han ◽  
Zhiyuan Liu ◽  
Maosong Sun

The existing methods for relation classification (RC) primarily rely on distant supervision (DS) because large-scale supervised training datasets are not readily available. Although DS automatically annotates adequate amounts of data for model training, the coverage of this data is still quite limited, and meanwhile many long-tail relations still suffer from data sparsity. Intuitively, people can grasp new knowledge by learning few instances. We thus provide a different view on RC by formalizing RC as a few-shot learning (FSL) problem. However, the current FSL models mainly focus on low-noise vision tasks, which makes them hard to directly deal with the diversity and noise of text. In this paper, we propose hybrid attention-based prototypical networks for the problem of noisy few-shot RC. We design instancelevel and feature-level attention schemes based on prototypical networks to highlight the crucial instances and features respectively, which significantly enhances the performance and robustness of RC models in a noisy FSL scenario. Besides, our attention schemes accelerate the convergence speed of RC models. Experimental results demonstrate that our hybrid attention-based models require fewer training iterations and outperform the state-of-the-art baseline models. The code and datasets are released on https://github.com/thunlp/ HATT-Proto.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qian Yi ◽  
Guixuan Zhang ◽  
Shuwu Zhang

Distant supervision is an effective method to automatically collect large-scale datasets for relation extraction (RE). Automatically constructed datasets usually comprise two types of noise: the intrasentence noise and the wrongly labeled noisy sentence. To address issues caused by the above two types of noise and improve distantly supervised relation extraction, this paper proposes a novel distantly supervised relation extraction model, which consists of an entity-based gated convolution sentence encoder and a multilevel sentence selective attention (Matt) module. Specifically, we first apply an entity-based gated convolution operation to force the sentence encoder to extract entity-pair-related features and filter out useless intrasentence noise information. Furthermore, the multilevel attention schema fuses the bag information to obtain a fine-grained bag-specific query vector, which can better identify valid sentences and reduce the influence of wrongly labeled sentences. Experimental results on a large-scale benchmark dataset show that our model can effectively reduce the influence of the above two types of noise and achieves state-of-the-art performance in relation extraction.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Srifi ◽  
Ahmed Oussous ◽  
Ayoub Ait Lahcen ◽  
Salma Mouline

AbstractVarious recommender systems (RSs) have been developed over recent years, and many of them have concentrated on English content. Thus, the majority of RSs from the literature were compared on English content. However, the research investigations about RSs when using contents in other languages such as Arabic are minimal. The researchers still neglect the field of Arabic RSs. Therefore, we aim through this study to fill this research gap by leveraging the benefit of recent advances in the English RSs field. Our main goal is to investigate recent RSs in an Arabic context. For that, we firstly selected five state-of-the-art RSs devoted originally to English content, and then we empirically evaluated their performance on Arabic content. As a result of this work, we first build four publicly available large-scale Arabic datasets for recommendation purposes. Second, various text preprocessing techniques have been provided for preparing the constructed datasets. Third, our investigation derived well-argued conclusions about the usage of modern RSs in the Arabic context. The experimental results proved that these systems ensure high performance when applied to Arabic content.


2020 ◽  
Vol 36 (10) ◽  
pp. 3011-3017 ◽  
Author(s):  
Olga Mineeva ◽  
Mateo Rojas-Carulla ◽  
Ruth E Ley ◽  
Bernhard Schölkopf ◽  
Nicholas D Youngblut

Abstract Motivation Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies. Results We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications. Conclusions DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects. Availability and implementation DeepMAsED is available from GitHub at https://github.com/leylabmpi/DeepMAsED. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Jun Zhou ◽  
Longfei Li ◽  
Ziqi Liu ◽  
Chaochao Chen

Recently, Factorization Machine (FM) has become more and more popular for recommendation systems due to its effectiveness in finding informative interactions between features. Usually, the weights for the interactions are learned as a low rank weight matrix, which is formulated as an inner product of two low rank matrices. This low rank matrix can help improve the generalization ability of Factorization Machine. However, to choose the rank properly, it usually needs to run the algorithm for many times using different ranks, which clearly is inefficient for some large-scale datasets. To alleviate this issue, we propose an Adaptive Boosting framework of Factorization Machine (AdaFM), which can adaptively search for proper ranks for different datasets without re-training. Instead of using a fixed rank for FM, the proposed algorithm will gradually increase its rank according to its performance until the performance does not grow. Extensive experiments are conducted to validate the proposed method on multiple large-scale datasets. The experimental results demonstrate that the proposed method can be more effective than the state-of-the-art Factorization Machines.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jiaxi Ye ◽  
Ruilin Li ◽  
Bin Zhang

Directed fuzzing is a practical technique, which concentrates its testing energy on the process toward the target code areas, while costing little on other unconcerned components. It is a promising way to make better use of available resources, especially in testing large-scale programs. However, by observing the state-of-the-art-directed fuzzing engine (AFLGo), we argue that there are two universal limitations, the balance problem between the exploration and the exploitation and the blindness in mutation toward the target code areas. In this paper, we present a new prototype RDFuzz to address these two limitations. In RDFuzz, we first introduce the frequency-guided strategy in the exploration and improve its accuracy by adopting the branch-level instead of the path-level frequency. Then, we introduce the input-distance-based evaluation strategy in the exploitation stage and present an optimized mutation to distinguish and protect the distance sensitive input content. Moreover, an intertwined testing schedule is leveraged to perform the exploration and exploitation in turn. We test RDFuzz on 7 benchmarks, and the experimental results demonstrate that RDFuzz is skilled at driving the program toward the target code areas, and it is not easily stuck by the balance problem of the exploration and the exploitation.


2021 ◽  
Vol 8 (2) ◽  
pp. 273-287
Author(s):  
Xuewei Bian ◽  
Chaoqun Wang ◽  
Weize Quan ◽  
Juntao Ye ◽  
Xiaopeng Zhang ◽  
...  

AbstractRecent learning-based approaches show promising performance improvement for the scene text removal task but usually leave several remnants of text and provide visually unpleasant results. In this work, a novel end-to-end framework is proposed based on accurate text stroke detection. Specifically, the text removal problem is decoupled into text stroke detection and stroke removal; we design separate networks to solve these two subproblems, the latter being a generative network. These two networks are combined as a processing unit, which is cascaded to obtain our final model for text removal. Experimental results demonstrate that the proposed method substantially outperforms the state-of-the-art for locating and erasing scene text. A new large-scale real-world dataset with 12,120 images has been constructed and is being made available to facilitate research, as current publicly available datasets are mainly synthetic so cannot properly measure the performance of different methods.


2021 ◽  
Vol 7 ◽  
pp. e824
Author(s):  
Yiren Li ◽  
Tieke Li ◽  
Pei Shen ◽  
Liang Hao ◽  
Wenjing Liu ◽  
...  

Microservice-based Web Systems (MWS), which provide a fundamental infrastructure for constructing large-scale cloud-based Web applications, are designed as a set of independent, small and modular microservices implementing individual tasks and communicating with messages. This microservice-based architecture offers great application scalability, but meanwhile incurs complex and reactive autoscaling actions that are performed dynamically and periodically based on current workloads. However, this problem has thus far remained largely unexplored. In this paper, we formulate a problem of Dynamic Resource Scheduling for Microservice-based Web Systems (DRS-MWS) and propose a similarity-based heuristic scheduling algorithm that aims to quickly find viable scheduling schemes by utilizing solutions to similar problems. The performance superiority of the proposed scheduling solution in comparison with three state-of-the-art algorithms is illustrated by experimental results generated through a well-known microservice benchmark on disparate computing nodes in public clouds.


Author(s):  
Jinyang Gao ◽  
Beng Chin Ooi ◽  
Yanyan Shen ◽  
Wang-Chien Lee

Feature hashing is widely used to process large scale sparse features for learning of predictive models. Collisions inherently happen in the hashing process and hurt the model performance. In this paper, we develop a feature hashing scheme called Cuckoo Feature Hashing(CCFH) based on the principle behind Cuckoo hashing, a hashing scheme designed to resolve collisions. By providing multiple possible hash locations for each feature, CCFH prevents the collisions between predictive features by dynamically hashing them into alternative locations during model training. Experimental results on prediction tasks with hundred-millions of features demonstrate that CCFH can achieve the same level of performance by using only 15%-25% parameters compared with conventional feature hashing.


Author(s):  
Xiaodong Gu ◽  
Hongyu Zhang ◽  
Dongmei Zhang ◽  
Sunghun Kim

Computer programs written in one language are often required to be ported to other languages to support multiple devices and environments. When programs use language specific APIs (Application Programming Interfaces), it is very challenging to migrate these APIs to the corresponding APIs written in other languages. Existing approaches mine API mappings from projects that have corresponding versions in two languages. They rely on the sparse availability of bilingual projects, thus producing a limited number of API mappings. In this paper, we propose an intelligent system called DeepAM for automatically mining API mappings from a large-scale code corpus without bilingual projects. The key component of DeepAM is based on the multi-modal sequence to sequence learning architecture that aims to learn joint semantic representations of bilingual API sequences from big source code data. Experimental results indicate that DeepAM significantly increases the accuracy of API mappings as well as the number of API mappings when compared with the state-of-the-art approaches.


Author(s):  
Sunghwan Joo ◽  
Sungmin Cha ◽  
Taesup Moon

We propose DoPAMINE, a new neural network based multiplicative noise despeckling algorithm. Our algorithm is inspired by Neural AIDE (N-AIDE), which is a recently proposed neural adaptive image denoiser. While the original NAIDE was designed for the additive noise case, we show that the same framework, i.e., adaptively learning a network for pixel-wise affine denoisers by minimizing an unbiased estimate of MSE, can be applied to the multiplicative noise case as well. Moreover, we derive a double-sided masked CNN architecture which can control the variance of the activation values in each layer and converge fast to high denoising performance during supervised training. In the experimental results, we show our DoPAMINE possesses high adaptivity via fine-tuning the network parameters based on the given noisy image and achieves significantly better despeckling results compared to SAR-DRN, a state-of-the-art CNN-based algorithm.


Sign in / Sign up

Export Citation Format

Share Document