scholarly journals Dynamic Layer Aggregation for Neural Machine Translation with Routing-by-Agreement

Author(s):  
Zi-Yi Dou ◽  
Zhaopeng Tu ◽  
Xing Wang ◽  
Longyue Wang ◽  
Shuming Shi ◽  
...  

With the promising progress of deep neural networks, layer aggregation has been used to fuse information across layers in various fields, such as computer vision and machine translation. However, most of the previous methods combine layers in a static fashion in that their aggregation strategy is independent of specific hidden states. Inspired by recent progress on capsule networks, in this paper we propose to use routing-by-agreement strategies to aggregate layers dynamically. Specifically, the algorithm learns the probability of a part (individual layer representations) assigned to a whole (aggregated representations) in an iterative way and combines parts accordingly. We implement our algorithm on top of the state-of-the-art neural machine translation model TRANSFORMER and conduct experiments on the widely-used WMT14 sh⇒German and WMT17 Chinese⇒English translation datasets. Experimental results across language pairs show that the proposed approach consistently outperforms the strong baseline model and a representative static aggregation model.

2019 ◽  
Vol 35 (2) ◽  
pp. 147-166 ◽  
Author(s):  
Hong-Hai Phan-Vu ◽  
Viet Trung Tran ◽  
Van Nam Nguyen ◽  
Hoang Vu Dang ◽  
Phan Thuan Do

Machine translation is shifting to an end-to-end approach based on deep neural networks. The state of the art achieves impressive results for popular language pairs such as English - French or English - Chinese. However for English - Vietnamese the shortage of parallel corpora and expensive hyper-parameter search present practical challenges to neural-based approaches. This paper highlights our efforts on improving English-Vietnamese translations in two directions: (1) Building the largest open Vietnamese - English corpus to date, and (2) Extensive experiments with the latest neural models to achieve the highest BLEU scores. Our experiments provide practical examples of effectively employing different neural machine translation models with low-resource language pairs.


Author(s):  
Hongtao Liu ◽  
Yanchun Liang ◽  
Liupu Wang ◽  
Xiaoyue Feng ◽  
Renchu Guan

To solve the problem of translation of professional vocabulary in the biomedical field and help biological researchers to translate and understand foreign language documents, we proposed a semantic disambiguation model and external dictionaries to build a novel translation model for biomedical texts based on the transformer model. The proposed biomedical neural machine translation system (BioNMT) adopts the sequence-to-sequence translation framework, which is based on deep neural networks. To construct the specialized vocabulary of biology and medicine, a hybrid corpus was obtained using a crawler system extracting from universal corpus and biomedical corpus. The experimental results showed that BioNMT which composed by professional biological dictionary and Transformer model increased the bilingual evaluation understudy (BLEU) value by 14.14%, and the perplexity was reduced by 40%. And compared with Google Translation System and Baidu Translation System, BioNMT achieved better translations about paragraphs and resolve the ambiguity of biomedical name entities to greatly improved.


Author(s):  
Xiangpeng Wei ◽  
Yue Hu ◽  
Luxi Xing ◽  
Yipeng Wang ◽  
Li Gao

The dominant neural machine translation (NMT) models that based on the encoder-decoder architecture have recently achieved the state-of-the-art performance. Traditionally, the NMT models only depend on the representations learned during training for mapping a source sentence into the target domain. However, the learned representations often suffer from implicit and inadequately informed properties. In this paper, we propose a novel bilingual topic enhanced NMT (BLTNMT) model to improve translation performance by incorporating bilingual topic knowledge into NMT. Specifically, the bilingual topic knowledge is included into the hidden states of both encoder and decoder, as well as the attention mechanism. With this new setting, the proposed BLT-NMT has access to the background knowledge implied in bilingual topics which is beyond the sequential context, and enables the attention mechanism to attend to topic-level attentions for generating accurate target words during translation. Experimental results show that the proposed model consistently outperforms the traditional RNNsearch and the previous topic-informed NMT on Chinese-English and EnglishGerman translation tasks. We also introduce the bilingual topic knowledge into the newly emerged Transformer base model on English-German translation and achieve a notable improvement.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1589
Author(s):  
Yongkeun Hwang ◽  
Yanghoon Kim ◽  
Kyomin Jung

Neural machine translation (NMT) is one of the text generation tasks which has achieved significant improvement with the rise of deep neural networks. However, language-specific problems such as handling the translation of honorifics received little attention. In this paper, we propose a context-aware NMT to promote translation improvements of Korean honorifics. By exploiting the information such as the relationship between speakers from the surrounding sentences, our proposed model effectively manages the use of honorific expressions. Specifically, we utilize a novel encoder architecture that can represent the contextual information of the given input sentences. Furthermore, a context-aware post-editing (CAPE) technique is adopted to refine a set of inconsistent sentence-level honorific translations. To demonstrate the efficacy of the proposed method, honorific-labeled test data is required. Thus, we also design a heuristic that labels Korean sentences to distinguish between honorific and non-honorific styles. Experimental results show that our proposed method outperforms sentence-level NMT baselines both in overall translation quality and honorific translations.


Author(s):  
Rashmini Naranpanawa ◽  
Ravinga Perera ◽  
Thilakshi Fonseka ◽  
Uthayasanker Thayasivam

Neural machine translation (NMT) is a remarkable approach which performs much better than the Statistical machine translation (SMT) models when there is an abundance of parallel corpus. However, vanilla NMT is primarily based upon word-level with a fixed vocabulary. Therefore, low resource morphologically rich languages such as Sinhala are mostly affected by the out of vocabulary (OOV) and Rare word problems. Recent advancements in subword techniques have opened up opportunities for low resource communities by enabling open vocabulary translation. In this paper, we extend our recently published state-of-the-art EN-SI translation system using the transformer and explore standard subword techniques on top of it to identify which subword approach has a greater effect on English Sinhala language pair. Our models demonstrate that subword segmentation strategies along with the state-of-the-art NMT can perform remarkably when translating English sentences into a rich morphology language regardless of a large parallel corpus.


Author(s):  
Yingce Xia ◽  
Tianyu He ◽  
Xu Tan ◽  
Fei Tian ◽  
Di He ◽  
...  

Sharing source and target side vocabularies and word embeddings has been a popular practice in neural machine translation (briefly, NMT) for similar languages (e.g., English to French or German translation). The success of such wordlevel sharing motivates us to move one step further: we consider model-level sharing and tie the whole parts of the encoder and decoder of an NMT model. We share the encoder and decoder of Transformer (Vaswani et al. 2017), the state-of-the-art NMT model, and obtain a compact model named Tied Transformer. Experimental results demonstrate that such a simple method works well for both similar and dissimilar language pairs. We empirically verify our framework for both supervised NMT and unsupervised NMT: we achieve a 35.52 BLEU score on IWSLT 2014 German to English translation, 28.98/29.89 BLEU scores on WMT 2014 English to German translation without/with monolingual data, and a 22.05 BLEU score on WMT 2016 unsupervised German to English translation.


Author(s):  
Mehreen Alam ◽  
Sibt ul Hussain

Attention-based encoder-decoder models have superseded conventional techniques due to their unmatched performance on many neural machine translation problems. Usually, the encoders and decoders are two recurrent neural networks where the decoder is directed to focus on relevant parts of the source language using attention mechanism. This data-driven approach leads to generic and scalable solutions with no reliance on manual hand-crafted features. To the best of our knowledge, none of the modern machine translation approaches has been applied to address the research problem of Urdu machine transliteration. Ours is the first attempt to apply the deep neural network-based encoder-decoder using attention mechanism to address the aforementioned problem using Roman-Urdu and Urdu parallel corpus. To this end, we present (i) the first ever Roman-Urdu to Urdu parallel corpus of 1.1 million sentences, (ii) three state of the art encoder-decoder models, and (iii) a detailed empirical analysis of these three models on the Roman-Urdu to Urdu parallel corpus. Overall, attention-based model gives state-of-the-art performance with the benchmark of 70 BLEU score. Our qualitative experimental evaluation shows that our models generate coherent transliterations which are grammatically and logically correct.


Author(s):  
Long Zhou ◽  
Jiajun Zhang ◽  
Chengqing Zong

Existing approaches to neural machine translation (NMT) generate the target language sequence token-by-token from left to right. However, this kind of unidirectional decoding framework cannot make full use of the target-side future contexts which can be produced in a right-to-left decoding direction, and thus suffers from the issue of unbalanced outputs. In this paper, we introduce a synchronous bidirectional–neural machine translation (SB-NMT) that predicts its outputs using left-to-right and right-to-left decoding simultaneously and interactively, in order to leverage both of the history and future information at the same time. Specifically, we first propose a new algorithm that enables synchronous bidirectional decoding in a single model. Then, we present an interactive decoding model in which left-to-right (right-to-left) generation does not only depend on its previously generated outputs, but also relies on future contexts predicted by right-to-left (left-to-right) decoding. We extensively evaluate the proposed SB-NMT model on large-scale NIST Chinese-English, WMT14 English-German, and WMT18 Russian-English translation tasks. Experimental results demonstrate that our model achieves significant improvements over the strong Transformer model by 3.92, 1.49, and 1.04 BLEU points, respectively, and obtains the state-of-the-art per- formance on Chinese-English and English- German translation tasks. 1


2017 ◽  
Vol 108 (1) ◽  
pp. 13-25 ◽  
Author(s):  
Parnia Bahar ◽  
Tamer Alkhouli ◽  
Jan-Thorsten Peter ◽  
Christopher Jan-Steffen Brix ◽  
Hermann Ney

AbstractTraining neural networks is a non-convex and a high-dimensional optimization problem. In this paper, we provide a comparative study of the most popular stochastic optimization techniques used to train neural networks. We evaluate the methods in terms of convergence speed, translation quality, and training stability. In addition, we investigate combinations that seek to improve optimization in terms of these aspects. We train state-of-the-art attention-based models and apply them to perform neural machine translation. We demonstrate our results on two tasks: WMT 2016 En→Ro and WMT 2015 De→En.


Sign in / Sign up

Export Citation Format

Share Document