scholarly journals Querying NoSQL with Deep Learning to Answer Natural Language Questions

Author(s):  
Sebastian Blank ◽  
Florian Wilhelm ◽  
Hans-Peter Zorn ◽  
Achim Rettinger

Almost all of today’s knowledge is stored in databases and thus can only be accessed with the help of domain specific query languages, strongly limiting the number of people which can access the data. In this work, we demonstrate an end-to-end trainable question answering (QA) system that allows a user to query an external NoSQL database by using natural language. A major challenge of such a system is the non-differentiability of database operations which we overcome by applying policy-based reinforcement learning. We evaluate our approach on Facebook’s bAbI Movie Dialog dataset and achieve a competitive score of 84.2% compared to several benchmark models. We conclude that our approach excels with regard to real-world scenarios where knowledge resides in external databases and intermediate labels are too costly to gather for non-end-to-end trainable QA systems.

2021 ◽  
Vol 47 (05) ◽  
Author(s):  
NGUYỄN CHÍ HIẾU

Knowledge Graphs are applied in many fields such as search engines, semantic analysis, and question answering in recent years. However, there are many obstacles for building knowledge graphs as methodologies, data and tools. This paper introduces a novel methodology to build knowledge graph from heterogeneous documents.  We use the methodologies of Natural Language Processing and deep learning to build this graph. The knowledge graph can use in Question answering systems and Information retrieval especially in Computing domain


Author(s):  
Mrunal Malekar

Domain based Question Answering is concerned with building systems which provide answers to natural language questions that are asked specific to a domain. It comes under Information Retrieval and Natural language processing. Using Information Retrieval, one can search for the relevant documents which may contain the answer but it won’t give the exact answer for the question asked. In the presented work, a question answering search engine has been developed which first finds out the relevant documents from a huge textual document data of a construction company and then goes a step beyond to extract answer from the extracted document. The robust question answering system developed uses Elastic Search for Information Retrieval [paragraphs extraction] and Deep Learning for answering the question from the short extracted paragraph. It leverages BERT Deep Learning Model to understand the layers and representations between the question and answer. The research work also focuses on how to improve the search accuracy of the Information Retrieval based Elastic Search engine which returns the relevant documents which may contain the answer.


2021 ◽  
Author(s):  
Nathan Ji ◽  
Yu Sun

The digital age gives us access to a multitude of both information and mediums in which we can interpret information. A majority of the time, many people find interpreting such information difficult as the medium may not be as user friendly as possible. This project has examined the inquiry of how one can identify specific information in a given text based on a question. This inquiry is intended to streamline one's ability to determine the relevance of a given text relative to his objective. The project has an overall 80% success rate given 10 articles with three questions asked per article. This success rate indicates that this project is likely applicable to those who are asking for content level questions within an article.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adrián Bazaga ◽  
Nupur Gunwant ◽  
Gos Micklem

AbstractThe number of databases as well as their size and complexity is increasing. This creates a barrier to use especially for non-experts, who have to come to grips with the nature of the data, the way it has been represented in the database, and the specific query languages or user interfaces by which data are accessed. These difficulties worsen in research settings, where it is common to work with many different databases. One approach to improving this situation is to allow users to pose their queries in natural language. In this work we describe a machine learning framework, Polyglotter, that in a general way supports the mapping of natural language searches to database queries. Importantly, it does not require the creation of manually annotated data for training and therefore can be applied easily to multiple domains. The framework is polyglot in the sense that it supports multiple different database engines that are accessed with a variety of query languages, including SQL and Cypher. Furthermore Polyglotter supports multi-class queries. Good performance is achieved on both toy and real databases, as well as a human-annotated WikiSQL query set. Thus Polyglotter may help database maintainers make their resources more accessible.


2022 ◽  
Vol 31 (1) ◽  
pp. 113-126
Author(s):  
Jia Guo

Abstract Emotional recognition has arisen as an essential field of study that can expose a variety of valuable inputs. Emotion can be articulated in several means that can be seen, like speech and facial expressions, written text, and gestures. Emotion recognition in a text document is fundamentally a content-based classification issue, including notions from natural language processing (NLP) and deep learning fields. Hence, in this study, deep learning assisted semantic text analysis (DLSTA) has been proposed for human emotion detection using big data. Emotion detection from textual sources can be done utilizing notions of Natural Language Processing. Word embeddings are extensively utilized for several NLP tasks, like machine translation, sentiment analysis, and question answering. NLP techniques improve the performance of learning-based methods by incorporating the semantic and syntactic features of the text. The numerical outcomes demonstrate that the suggested method achieves an expressively superior quality of human emotion detection rate of 97.22% and the classification accuracy rate of 98.02% with different state-of-the-art methods and can be enhanced by other emotional word embeddings.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Asma Ben Abacha ◽  
Dina Demner-Fushman

Abstract Background One of the challenges in large-scale information retrieval (IR) is developing fine-grained and domain-specific methods to answer natural language questions. Despite the availability of numerous sources and datasets for answer retrieval, Question Answering (QA) remains a challenging problem due to the difficulty of the question understanding and answer extraction tasks. One of the promising tracks investigated in QA is mapping new questions to formerly answered questions that are “similar”. Results We propose a novel QA approach based on Recognizing Question Entailment (RQE) and we describe the QA system and resources that we built and evaluated on real medical questions. First, we compare logistic regression and deep learning methods for RQE using different kinds of datasets including textual inference, question similarity, and entailment in both the open and clinical domains. Second, we combine IR models with the best RQE method to select entailed questions and rank the retrieved answers. To study the end-to-end QA approach, we built the MedQuAD collection of 47,457 question-answer pairs from trusted medical sources which we introduce and share in the scope of this paper. Following the evaluation process used in TREC 2017 LiveQA, we find that our approach exceeds the best results of the medical task with a 29.8% increase over the best official score. Conclusions The evaluation results support the relevance of question entailment for QA and highlight the effectiveness of combining IR and RQE for future QA efforts. Our findings also show that relying on a restricted set of reliable answer sources can bring a substantial improvement in medical QA.


Author(s):  
Phuc Do ◽  
Truong H. V. Phan ◽  
Brij B. Gupta

In recent years, Question Answering (QA) systems have increasingly become very popular in many sectors. This study aims to use a knowledge graph and deep learning to develop a QA system for tourism in Vietnam. First, the QA system replies to a user's question about a place in Vietnam. Then, the QA describes it in detail such as when the place was discovered, why the place's name was called like that, and so on. Finally, the system recommends some related tourist attractions to users. Meanwhile, deep learning is used to solve a simple natural language answer, and a knowledge graph is used to infer a natural language answering list related to entities in the question. The study experiments on a manual dataset collected from Vietnamese tourism websites. As a result, the QA system combining the two above approaches provides more information than other systems have done before. Besides that, the system gets 0.83 F1, 0.87 precision on the test set.


2020 ◽  
Author(s):  
Shiqi Liang ◽  
Kurt Stockinger ◽  
Tarcisio Mendes de Farias ◽  
Maria Anisimova ◽  
Manuel Gil

Abstract Knowledge graphs are a powerful concept for querying large amounts of data. These knowledge graphs are typically enormous and are often not easily accessible to end-users because they require specialized knowledge in query languages such as SPARQL. Moreover, end-users need a deep understanding of the structure of the underlying data models often based on the Resource Description Framework (RDF). This drawback has led to the development of Question-Answering (QA) systems that enable end-users to express their information needs in natural language. While existing systems simplify user access, there is still room for improvement in the accuracy of these systems. In this paper we propose a new QA system for translating natural language questions into SPARQL queries. The key idea is to break up the translation process into 5 smaller, more manageable sub-tasks and use ensemble machine learning methods as well as Tree-LSTM-based neural network models to automatically learn and translate a natural language question into a SPARQL query. The performance of our proposed QA system is empirically evaluated using the two renowned benchmarks - the 7th Question Answering over Linked Data Challenge (QALD-7) and the Large-Scale Complex Question Answering Dataset (LC-QuAD). Experimental results show that our QA system outperforms the state-of-art systems by 15% on the QALD-7 dataset and by 48% on the LC-QuAD dataset, respectively. In addition, we make our source code available.


Author(s):  
Gowhar Mohiuddin Dar ◽  
Ashok Sharma ◽  
Parveen Singh

The chapter explores the implications of deep learning in medical sciences, focusing on deep learning concerning natural language processing, computer vision, reinforcement learning, big data, and blockchain influence on some areas of medicine and construction of end-to-end systems with the help of these computational techniques. The deliberation of computer vision in the study is mainly concerned with medical imaging and further usage of natural language processing to spheres such as electronic wellbeing record data. Application of deep learning in genetic mapping and DNA sequencing termed as genomics and implications of reinforcement learning about surgeries assisted by robots are also overviewed.


Sign in / Sign up

Export Citation Format

Share Document