scholarly journals EC-GAN: Inferring Brain Effective Connectivity via Generative Adversarial Networks

2020 ◽  
Vol 34 (04) ◽  
pp. 4852-4859
Author(s):  
Jinduo Liu ◽  
Junzhong Ji ◽  
Guangxu Xun ◽  
Liuyi Yao ◽  
Mengdi Huai ◽  
...  

Inferring effective connectivity between different brain regions from functional magnetic resonance imaging (fMRI) data is an important advanced study in neuroinformatics in recent years. However, current methods have limited usage in effective connectivity studies due to the high noise and small sample size of fMRI data. In this paper, we propose a novel framework for inferring effective connectivity based on generative adversarial networks (GAN), named as EC-GAN. The proposed framework EC-GAN infers effective connectivity via an adversarial process, in which we simultaneously train two models: a generator and a discriminator. The generator consists of a set of effective connectivity generators based on structural equation models which can generate the fMRI time series of each brain region via effective connectivity. Meanwhile, the discriminator is employed to distinguish between the joint distributions of the real and generated fMRI time series. Experimental results on simulated data show that EC-GAN can better infer effective connectivity compared to other state-of-the-art methods. The real-world experiments indicate that EC-GAN can provide a new and reliable perspective analyzing the effective connectivity of fMRI data.

2021 ◽  
Vol 11 (2) ◽  
pp. 721
Author(s):  
Hyung Yong Kim ◽  
Ji Won Yoon ◽  
Sung Jun Cheon ◽  
Woo Hyun Kang ◽  
Nam Soo Kim

Recently, generative adversarial networks (GANs) have been successfully applied to speech enhancement. However, there still remain two issues that need to be addressed: (1) GAN-based training is typically unstable due to its non-convex property, and (2) most of the conventional methods do not fully take advantage of the speech characteristics, which could result in a sub-optimal solution. In order to deal with these problems, we propose a progressive generator that can handle the speech in a multi-resolution fashion. Additionally, we propose a multi-scale discriminator that discriminates the real and generated speech at various sampling rates to stabilize GAN training. The proposed structure was compared with the conventional GAN-based speech enhancement algorithms using the VoiceBank-DEMAND dataset. Experimental results showed that the proposed approach can make the training faster and more stable, which improves the performance on various metrics for speech enhancement.


2021 ◽  
Vol 405 ◽  
pp. 113188
Author(s):  
Maria Dolores Figueroa-Jiménez ◽  
Cristina Cañete-Massé ◽  
María Carbó-Carreté ◽  
Daniel Zarabozo-Hurtado ◽  
Joan Guàrdia-Olmos

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Keke Gao ◽  
Wenbin Feng ◽  
Xia Zhao ◽  
Chongchong Yu ◽  
Weijun Su ◽  
...  

The spontaneous combustion of residual coals in the mined-out area tends to cause an explosion, which is one kind of severe thermodynamic compound disaster of coal mines and leads to serious losses to people's lives and production safety. The prediction and early warning of coal mine thermodynamic disasters are mainly determined by the changes of the index gas concentration pattern in coal mine mined-out areas collected continuously. The time series anomaly pattern detection method is mainly used to reach the state change of gas concentration pattern. The change of gas concentration follows a certain rule as time changes. A great change in the gas concentration indicates the possibility of coal spontaneous combustion and other disasters. To emphasize the features of collected maker gas and overcome the low anomaly detection accuracy caused by the inadequate learning of the normal mode, this paper adopted a method of anomaly detection for time series with difference rate sample entropy and generative adversarial networks. Because the difference rate entropy feature of abnormal data was much larger than that of normal mode, this paper improved the calculation method of the abnormal score by giving different weights to the detection points to enhance the detection rate. To verify the effectiveness of the proposed method, this paper employed simulation models of the mined-out area and adopted coal samples from Dafosi Coal Mine to carry out experiments. Preliminary testing was performed using monitoring data from a coal mine. The experiment compared the entropy results of different time series with the detection results of generative adversarial networks and automatic encoders and showed that the method proposed in this paper had relatively high detection accuracy.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S147
Author(s):  
GA James ◽  
RC Craddock ◽  
ME Kelley ◽  
PE Holzheimer ◽  
B Dunlop ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6673
Author(s):  
Lichuan Zou ◽  
Hong Zhang ◽  
Chao Wang ◽  
Fan Wu ◽  
Feng Gu

In high-resolution Synthetic Aperture Radar (SAR) ship detection, the number of SAR samples seriously affects the performance of the algorithms based on deep learning. In this paper, aiming at the application requirements of high-resolution ship detection in small samples, a high-resolution SAR ship detection method combining an improved sample generation network, Multiscale Wasserstein Auxiliary Classifier Generative Adversarial Networks (MW-ACGAN) and the Yolo v3 network is proposed. Firstly, the multi-scale Wasserstein distance and gradient penalty loss are used to improve the original Auxiliary Classifier Generative Adversarial Networks (ACGAN), so that the improved network can stably generate high-resolution SAR ship images. Secondly, the multi-scale loss term is added to the network, so the multi-scale image output layers are added, and multi-scale SAR ship images can be generated. Then, the original ship data set and the generated data are combined into a composite data set to train the Yolo v3 target detection network, so as to solve the problem of low detection accuracy under small sample data set. The experimental results of Gaofen-3 (GF-3) 3 m SAR data show that the MW-ACGAN network can generate multi-scale and multi-class ship slices, and the confidence level of ResNet18 is higher than that of ACGAN network, with an average score of 0.91. The detection results of Yolo v3 network model show that the detection accuracy trained by the composite data set is as high as 94%, which is far better than that trained only by the original SAR data set. These results show that our method can make the best use of the original data set, improve the accuracy of ship detection.


Sign in / Sign up

Export Citation Format

Share Document