scholarly journals WinoGrande: An Adversarial Winograd Schema Challenge at Scale

2020 ◽  
Vol 34 (05) ◽  
pp. 8732-8740 ◽  
Author(s):  
Keisuke Sakaguchi ◽  
Ronan Le Bras ◽  
Chandra Bhagavatula ◽  
Yejin Choi

The Winograd Schema Challenge (WSC) (Levesque, Davis, and Morgenstern 2011), a benchmark for commonsense reasoning, is a set of 273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models that rely on selectional preferences or word associations. However, recent advances in neural language models have already reached around 90% accuracy on variants of WSC. This raises an important question whether these models have truly acquired robust commonsense capabilities or whether they rely on spurious biases in the datasets that lead to an overestimation of the true capabilities of machine commonsense.To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC design, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) a carefully designed crowdsourcing procedure, followed by (2) systematic bias reduction using a novel AfLite algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. The best state-of-the-art methods on WinoGrande achieve 59.4 – 79.1%, which are ∼15-35% (absolute) below human performance of 94.0%, depending on the amount of the training data allowed (2% – 100% respectively).Furthermore, we establish new state-of-the-art results on five related benchmarks — WSC (→ 90.1%), DPR (→ 93.1%), COPA(→ 90.6%), KnowRef (→ 85.6%), and Winogender (→ 97.1%). These results have dual implications: on one hand, they demonstrate the effectiveness of WinoGrande when used as a resource for transfer learning. On the other hand, they raise a concern that we are likely to be overestimating the true capabilities of machine commonsense across all these benchmarks. We emphasize the importance of algorithmic bias reduction in existing and future benchmarks to mitigate such overestimation.

2021 ◽  
Vol 64 (9) ◽  
pp. 99-106
Author(s):  
Keisuke Sakaguchi ◽  
Ronan Le Bras ◽  
Chandra Bhagavatula ◽  
Yejin Choi

Commonsense reasoning remains a major challenge in AI, and yet, recent progresses on benchmarks may seem to suggest otherwise. In particular, the recent neural language models have reported above 90% accuracy on the Winograd Schema Challenge (WSC), a commonsense benchmark originally designed to be unsolvable for statistical models that rely simply on word associations. This raises an important question---whether these models have truly acquired robust commonsense capabilities or they rely on spurious biases in the dataset that lead to an overestimation of the true capabilities of machine commonsense. To investigate this question, we introduce WinoGrande, a large-scale dataset of 44k problems, inspired by the original WSC, but adjusted to improve both the scale and the hardness of the dataset. The key steps of the dataset construction consist of (1) large-scale crowdsourcing, followed by (2) systematic bias reduction using a novel AFLITE algorithm that generalizes human-detectable word associations to machine-detectable embedding associations. Our experiments demonstrate that state-of-the-art models achieve considerably lower accuracy (59.4%-79.1%) on WINOGRANDE compared to humans (94%), confirming that the high performance on the original WSC was inflated by spurious biases in the dataset. Furthermore, we report new state-of-the-art results on five related benchmarks with emphasis on their dual implications. On the one hand, they demonstrate the effectiveness of WINOGRANDE when used as a resource for transfer learning. On the other hand, the high performance on all these benchmarks suggests the extent to which spurious biases are prevalent in all such datasets, which motivates further research on algorithmic bias reduction.


2020 ◽  
Vol 34 (05) ◽  
pp. 7554-7561
Author(s):  
Pengxiang Cheng ◽  
Katrin Erk

Recent progress in NLP witnessed the development of large-scale pre-trained language models (GPT, BERT, XLNet, etc.) based on Transformer (Vaswani et al. 2017), and in a range of end tasks, such models have achieved state-of-the-art results, approaching human performance. This clearly demonstrates the power of the stacked self-attention architecture when paired with a sufficient number of layers and a large amount of pre-training data. However, on tasks that require complex and long-distance reasoning where surface-level cues are not enough, there is still a large gap between the pre-trained models and human performance. Strubell et al. (2018) recently showed that it is possible to inject knowledge of syntactic structure into a model through supervised self-attention. We conjecture that a similar injection of semantic knowledge, in particular, coreference information, into an existing model would improve performance on such complex problems. On the LAMBADA (Paperno et al. 2016) task, we show that a model trained from scratch with coreference as auxiliary supervision for self-attention outperforms the largest GPT-2 model, setting the new state-of-the-art, while only containing a tiny fraction of parameters compared to GPT-2. We also conduct a thorough analysis of different variants of model architectures and supervision configurations, suggesting future directions on applying similar techniques to other problems.


2020 ◽  
Vol 34 (05) ◽  
pp. 8082-8090
Author(s):  
Tushar Khot ◽  
Peter Clark ◽  
Michal Guerquin ◽  
Peter Jansen ◽  
Ashish Sabharwal

Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition (QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirable properties: (a) the facts to be composed are annotated in a large corpus, and (b) the decomposition into these facts is not evident from the question itself. The latter makes retrieval challenging as the system must introduce new concepts or relations in order to discover potential decompositions. Further, the reasoning model must then learn to identify valid compositions of these retrieved facts using common-sense reasoning. To help address these challenges, we provide annotation for supporting facts as well as their composition. Guided by these annotations, we present a two-step approach to mitigate the retrieval challenges. We use other multiple-choice datasets as additional training data to strengthen the reasoning model. Our proposed approach improves over current state-of-the-art language models by 11% (absolute). The reasoning and retrieval problems, however, remain unsolved as this model still lags by 20% behind human performance.


Author(s):  
Hengyi Cai ◽  
Hongshen Chen ◽  
Yonghao Song ◽  
Xiaofang Zhao ◽  
Dawei Yin

Humans benefit from previous experiences when taking actions. Similarly, related examples from the training data also provide exemplary information for neural dialogue models when responding to a given input message. However, effectively fusing such exemplary information into dialogue generation is non-trivial: useful exemplars are required to be not only literally-similar, but also topic-related with the given context. Noisy exemplars impair the neural dialogue models understanding the conversation topics and even corrupt the response generation. To address the issues, we propose an exemplar guided neural dialogue generation model where exemplar responses are retrieved in terms of both the text similarity and the topic proximity through a two-stage exemplar retrieval model. In the first stage, a small subset of conversations is retrieved from a training set given a dialogue context. These candidate exemplars are then finely ranked regarding the topical proximity to choose the best-matched exemplar response. To further induce the neural dialogue generation model consulting the exemplar response and the conversation topics more faithfully, we introduce a multi-source sampling mechanism to provide the dialogue model with both local exemplary semantics and global topical guidance during decoding. Empirical evaluations on a large-scale conversation dataset show that the proposed approach significantly outperforms the state-of-the-art in terms of both the quantitative metrics and human evaluations.


Author(s):  
Nan Cao ◽  
Xin Yan ◽  
Yang Shi ◽  
Chaoran Chen

Sketch drawings play an important role in assisting humans in communication and creative design since ancient period. This situation has motivated the development of artificial intelligence (AI) techniques for automatically generating sketches based on user input. Sketch-RNN, a sequence-to-sequence variational autoencoder (VAE) model, was developed for this purpose and known as a state-of-the-art technique. However, it suffers from limitations, including the generation of lowquality results and its incapability to support multi-class generations. To address these issues, we introduced AI-Sketcher, a deep generative model for generating high-quality multiclass sketches. Our model improves drawing quality by employing a CNN-based autoencoder to capture the positional information of each stroke at the pixel level. It also introduces an influence layer to more precisely guide the generation of each stroke by directly referring to the training data. To support multi-class sketch generation, we provided a conditional vector that can help differentiate sketches under various classes. The proposed technique was evaluated based on two large-scale sketch datasets, and results demonstrated its power in generating high-quality sketches.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Aboubakar Nasser Samatin Njikam ◽  
Huan Zhao

This paper introduces an extremely lightweight (with just over around two hundred thousand parameters) and computationally efficient CNN architecture, named CharTeC-Net (Character-based Text Classification Network), for character-based text classification problems. This new architecture is composed of four building blocks for feature extraction. Each of these building blocks, except the last one, uses 1 × 1 pointwise convolutional layers to add more nonlinearity to the network and to increase the dimensions within each building block. In addition, shortcut connections are used in each building block to facilitate the flow of gradients over the network, but more importantly to ensure that the original signal present in the training data is shared across each building block. Experiments on eight standard large-scale text classification and sentiment analysis datasets demonstrate CharTeC-Net’s superior performance over baseline methods and yields competitive accuracy compared with state-of-the-art methods, although CharTeC-Net has only between 181,427 and 225,323 parameters and weighs less than 1 megabyte.


2014 ◽  
Vol 3 (2) ◽  
pp. 137-154 ◽  
Author(s):  
Wessel Stoop ◽  
Antal van den Bosch

Word prediction, or predictive editing, has a long history as a tool for augmentative and assistive communication. Improvements in the state-of-the-art can still be achieved, for instance by training personalized statistical language models. We developed the word prediction system Soothsayer. The main innovation of Soothsayer is that it not only uses idiolects, the language of one individual person, as training data, but also sociolects, the language of the social circle around that person. We use Twitter for data collection and experimentation. The idiolect models are based on individual Twitter feeds, the sociolect models are based on the tweets of a particular person and the tweets of the people he often communicates with. The sociolect approach achieved the best results. For a number of users, more than 50% of the keystrokes could have been saved if they had used Soothsayer.


2020 ◽  
Author(s):  
Vertika Srivastava ◽  
Sudeep Kumar Sahoo ◽  
Yeon Hyang Kim ◽  
Rohit R.r ◽  
Mayank Raj ◽  
...  

Author(s):  
Xiaoxiao Sun ◽  
Liyi Chen ◽  
Jufeng Yang

Fine-grained classification is absorbed in recognizing the subordinate categories of one field, which need a large number of labeled images, while it is expensive to label these images. Utilizing web data has been an attractive option to meet the demands of training data for convolutional neural networks (CNNs), especially when the well-labeled data is not enough. However, directly training on such easily obtained images often leads to unsatisfactory performance due to factors such as noisy labels. This has been conventionally addressed by reducing the noise level of web data. In this paper, we take a fundamentally different view and propose an adversarial discriminative loss to advocate representation coherence between standard and web data. This is further encapsulated in a simple, scalable and end-to-end trainable multi-task learning framework. We experiment on three public datasets using large-scale web data to evaluate the effectiveness and generalizability of the proposed approach. Extensive experiments demonstrate that our approach performs favorably against the state-of-the-art methods.


2019 ◽  
Vol 53 (2) ◽  
pp. 104-105
Author(s):  
Hamed Zamani

Recent developments of machine learning models, and in particular deep neural networks, have yielded significant improvements on several computer vision, natural language processing, and speech recognition tasks. Progress with information retrieval (IR) tasks has been slower, however, due to the lack of large-scale training data as well as neural network models specifically designed for effective information retrieval [9]. In this dissertation, we address these two issues by introducing task-specific neural network architectures for a set of IR tasks and proposing novel unsupervised or weakly supervised solutions for training the models. The proposed learning solutions do not require labeled training data. Instead, in our weak supervision approach, neural models are trained on a large set of noisy and biased training data obtained from external resources, existing models, or heuristics. We first introduce relevance-based embedding models [3] that learn distributed representations for words and queries. We show that the learned representations can be effectively employed for a set of IR tasks, including query expansion, pseudo-relevance feedback, and query classification [1, 2]. We further propose a standalone learning to rank model based on deep neural networks [5, 8]. Our model learns a sparse representation for queries and documents. This enables us to perform efficient retrieval by constructing an inverted index in the learned semantic space. Our model outperforms state-of-the-art retrieval models, while performing as efficiently as term matching retrieval models. We additionally propose a neural network framework for predicting the performance of a retrieval model for a given query [7]. Inspired by existing query performance prediction models, our framework integrates several information sources, such as retrieval score distribution and term distribution in the top retrieved documents. This leads to state-of-the-art results for the performance prediction task on various standard collections. We finally bridge the gap between retrieval and recommendation models, as the two key components in most information systems. Search and recommendation often share the same goal: helping people get the information they need at the right time. Therefore, joint modeling and optimization of search engines and recommender systems could potentially benefit both systems [4]. In more detail, we introduce a retrieval model that is trained using user-item interaction (e.g., recommendation data), with no need to query-document relevance information for training [6]. Our solutions and findings in this dissertation smooth the path towards learning efficient and effective models for various information retrieval and related tasks, especially when large-scale training data is not available.


Sign in / Sign up

Export Citation Format

Share Document