scholarly journals Neural models for information retrieval without labeled data

2019 ◽  
Vol 53 (2) ◽  
pp. 104-105
Author(s):  
Hamed Zamani

Recent developments of machine learning models, and in particular deep neural networks, have yielded significant improvements on several computer vision, natural language processing, and speech recognition tasks. Progress with information retrieval (IR) tasks has been slower, however, due to the lack of large-scale training data as well as neural network models specifically designed for effective information retrieval [9]. In this dissertation, we address these two issues by introducing task-specific neural network architectures for a set of IR tasks and proposing novel unsupervised or weakly supervised solutions for training the models. The proposed learning solutions do not require labeled training data. Instead, in our weak supervision approach, neural models are trained on a large set of noisy and biased training data obtained from external resources, existing models, or heuristics. We first introduce relevance-based embedding models [3] that learn distributed representations for words and queries. We show that the learned representations can be effectively employed for a set of IR tasks, including query expansion, pseudo-relevance feedback, and query classification [1, 2]. We further propose a standalone learning to rank model based on deep neural networks [5, 8]. Our model learns a sparse representation for queries and documents. This enables us to perform efficient retrieval by constructing an inverted index in the learned semantic space. Our model outperforms state-of-the-art retrieval models, while performing as efficiently as term matching retrieval models. We additionally propose a neural network framework for predicting the performance of a retrieval model for a given query [7]. Inspired by existing query performance prediction models, our framework integrates several information sources, such as retrieval score distribution and term distribution in the top retrieved documents. This leads to state-of-the-art results for the performance prediction task on various standard collections. We finally bridge the gap between retrieval and recommendation models, as the two key components in most information systems. Search and recommendation often share the same goal: helping people get the information they need at the right time. Therefore, joint modeling and optimization of search engines and recommender systems could potentially benefit both systems [4]. In more detail, we introduce a retrieval model that is trained using user-item interaction (e.g., recommendation data), with no need to query-document relevance information for training [6]. Our solutions and findings in this dissertation smooth the path towards learning efficient and effective models for various information retrieval and related tasks, especially when large-scale training data is not available.

Author(s):  
Hengyi Cai ◽  
Hongshen Chen ◽  
Yonghao Song ◽  
Xiaofang Zhao ◽  
Dawei Yin

Humans benefit from previous experiences when taking actions. Similarly, related examples from the training data also provide exemplary information for neural dialogue models when responding to a given input message. However, effectively fusing such exemplary information into dialogue generation is non-trivial: useful exemplars are required to be not only literally-similar, but also topic-related with the given context. Noisy exemplars impair the neural dialogue models understanding the conversation topics and even corrupt the response generation. To address the issues, we propose an exemplar guided neural dialogue generation model where exemplar responses are retrieved in terms of both the text similarity and the topic proximity through a two-stage exemplar retrieval model. In the first stage, a small subset of conversations is retrieved from a training set given a dialogue context. These candidate exemplars are then finely ranked regarding the topical proximity to choose the best-matched exemplar response. To further induce the neural dialogue generation model consulting the exemplar response and the conversation topics more faithfully, we introduce a multi-source sampling mechanism to provide the dialogue model with both local exemplary semantics and global topical guidance during decoding. Empirical evaluations on a large-scale conversation dataset show that the proposed approach significantly outperforms the state-of-the-art in terms of both the quantitative metrics and human evaluations.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


Author(s):  
Anil S. Baslamisli ◽  
Partha Das ◽  
Hoang-An Le ◽  
Sezer Karaoglu ◽  
Theo Gevers

AbstractIn general, intrinsic image decomposition algorithms interpret shading as one unified component including all photometric effects. As shading transitions are generally smoother than reflectance (albedo) changes, these methods may fail in distinguishing strong photometric effects from reflectance variations. Therefore, in this paper, we propose to decompose the shading component into direct (illumination) and indirect shading (ambient light and shadows) subcomponents. The aim is to distinguish strong photometric effects from reflectance variations. An end-to-end deep convolutional neural network (ShadingNet) is proposed that operates in a fine-to-coarse manner with a specialized fusion and refinement unit exploiting the fine-grained shading model. It is designed to learn specific reflectance cues separated from specific photometric effects to analyze the disentanglement capability. A large-scale dataset of scene-level synthetic images of outdoor natural environments is provided with fine-grained intrinsic image ground-truths. Large scale experiments show that our approach using fine-grained shading decompositions outperforms state-of-the-art algorithms utilizing unified shading on NED, MPI Sintel, GTA V, IIW, MIT Intrinsic Images, 3DRMS and SRD datasets.


Author(s):  
Yuheng Hu ◽  
Yili Hong

Residents often rely on newspapers and television to gather hyperlocal news for community awareness and engagement. More recently, social media have emerged as an increasingly important source of hyperlocal news. Thus far, the literature on using social media to create desirable societal benefits, such as civic awareness and engagement, is still in its infancy. One key challenge in this research stream is to timely and accurately distill information from noisy social media data streams to community members. In this work, we develop SHEDR (social media–based hyperlocal event detection and recommendation), an end-to-end neural event detection and recommendation framework with a particular use case for Twitter to facilitate residents’ information seeking of hyperlocal events. The key model innovation in SHEDR lies in the design of the hyperlocal event detector and the event recommender. First, we harness the power of two popular deep neural network models, the convolutional neural network (CNN) and long short-term memory (LSTM), in a novel joint CNN-LSTM model to characterize spatiotemporal dependencies for capturing unusualness in a region of interest, which is classified as a hyperlocal event. Next, we develop a neural pairwise ranking algorithm for recommending detected hyperlocal events to residents based on their interests. To alleviate the sparsity issue and improve personalization, our algorithm incorporates several types of contextual information covering topic, social, and geographical proximities. We perform comprehensive evaluations based on two large-scale data sets comprising geotagged tweets covering Seattle and Chicago. We demonstrate the effectiveness of our framework in comparison with several state-of-the-art approaches. We show that our hyperlocal event detection and recommendation models consistently and significantly outperform other approaches in terms of precision, recall, and F-1 scores. Summary of Contribution: In this paper, we focus on a novel and important, yet largely underexplored application of computing—how to improve civic engagement in local neighborhoods via local news sharing and consumption based on social media feeds. To address this question, we propose two new computational and data-driven methods: (1) a deep learning–based hyperlocal event detection algorithm that scans spatially and temporally to detect hyperlocal events from geotagged Twitter feeds; and (2) A personalized deep learning–based hyperlocal event recommender system that systematically integrates several contextual cues such as topical, geographical, and social proximity to recommend the detected hyperlocal events to potential users. We conduct a series of experiments to examine our proposed models. The outcomes demonstrate that our algorithms are significantly better than the state-of-the-art models and can provide users with more relevant information about the local neighborhoods that they live in, which in turn may boost their community engagement.


2020 ◽  
Vol 10 (6) ◽  
pp. 2104
Author(s):  
Michał Tomaszewski ◽  
Paweł Michalski ◽  
Jakub Osuchowski

This article presents an analysis of the effectiveness of object detection in digital images with the application of a limited quantity of input. The possibility of using a limited set of learning data was achieved by developing a detailed scenario of the task, which strictly defined the conditions of detector operation in the considered case of a convolutional neural network. The described solution utilizes known architectures of deep neural networks in the process of learning and object detection. The article presents comparisons of results from detecting the most popular deep neural networks while maintaining a limited training set composed of a specific number of selected images from diagnostic video. The analyzed input material was recorded during an inspection flight conducted along high-voltage lines. The object detector was built for a power insulator. The main contribution of the presented papier is the evidence that a limited training set (in our case, just 60 training frames) could be used for object detection, assuming an outdoor scenario with low variability of environmental conditions. The decision of which network will generate the best result for such a limited training set is not a trivial task. Conducted research suggests that the deep neural networks will achieve different levels of effectiveness depending on the amount of training data. The most beneficial results were obtained for two convolutional neural networks: the faster region-convolutional neural network (faster R-CNN) and the region-based fully convolutional network (R-FCN). Faster R-CNN reached the highest AP (average precision) at a level of 0.8 for 60 frames. The R-FCN model gained a worse AP result; however, it can be noted that the relationship between the number of input samples and the obtained results has a significantly lower influence than in the case of other CNN models, which, in the authors’ assessment, is a desired feature in the case of a limited training set.


2017 ◽  
Vol 3 ◽  
pp. e137 ◽  
Author(s):  
Mona Alshahrani ◽  
Othman Soufan ◽  
Arturo Magana-Mora ◽  
Vladimir B. Bajic

Background Artificial neural networks (ANNs) are a robust class of machine learning models and are a frequent choice for solving classification problems. However, determining the structure of the ANNs is not trivial as a large number of weights (connection links) may lead to overfitting the training data. Although several ANN pruning algorithms have been proposed for the simplification of ANNs, these algorithms are not able to efficiently cope with intricate ANN structures required for complex classification problems. Methods We developed DANNP, a web-based tool, that implements parallelized versions of several ANN pruning algorithms. The DANNP tool uses a modified version of the Fast Compressed Neural Network software implemented in C++ to considerably enhance the running time of the ANN pruning algorithms we implemented. In addition to the performance evaluation of the pruned ANNs, we systematically compared the set of features that remained in the pruned ANN with those obtained by different state-of-the-art feature selection (FS) methods. Results Although the ANN pruning algorithms are not entirely parallelizable, DANNP was able to speed up the ANN pruning up to eight times on a 32-core machine, compared to the serial implementations. To assess the impact of the ANN pruning by DANNP tool, we used 16 datasets from different domains. In eight out of the 16 datasets, DANNP significantly reduced the number of weights by 70%–99%, while maintaining a competitive or better model performance compared to the unpruned ANN. Finally, we used a naïve Bayes classifier derived with the features selected as a byproduct of the ANN pruning and demonstrated that its accuracy is comparable to those obtained by the classifiers trained with the features selected by several state-of-the-art FS methods. The FS ranking methodology proposed in this study allows the users to identify the most discriminant features of the problem at hand. To the best of our knowledge, DANNP (publicly available at www.cbrc.kaust.edu.sa/dannp) is the only available and on-line accessible tool that provides multiple parallelized ANN pruning options. Datasets and DANNP code can be obtained at www.cbrc.kaust.edu.sa/dannp/data.php and https://doi.org/10.5281/zenodo.1001086.


2020 ◽  
Vol 34 (05) ◽  
pp. 7554-7561
Author(s):  
Pengxiang Cheng ◽  
Katrin Erk

Recent progress in NLP witnessed the development of large-scale pre-trained language models (GPT, BERT, XLNet, etc.) based on Transformer (Vaswani et al. 2017), and in a range of end tasks, such models have achieved state-of-the-art results, approaching human performance. This clearly demonstrates the power of the stacked self-attention architecture when paired with a sufficient number of layers and a large amount of pre-training data. However, on tasks that require complex and long-distance reasoning where surface-level cues are not enough, there is still a large gap between the pre-trained models and human performance. Strubell et al. (2018) recently showed that it is possible to inject knowledge of syntactic structure into a model through supervised self-attention. We conjecture that a similar injection of semantic knowledge, in particular, coreference information, into an existing model would improve performance on such complex problems. On the LAMBADA (Paperno et al. 2016) task, we show that a model trained from scratch with coreference as auxiliary supervision for self-attention outperforms the largest GPT-2 model, setting the new state-of-the-art, while only containing a tiny fraction of parameters compared to GPT-2. We also conduct a thorough analysis of different variants of model architectures and supervision configurations, suggesting future directions on applying similar techniques to other problems.


2021 ◽  
Vol 9 ◽  
pp. 929-944
Author(s):  
Omar Khattab ◽  
Christopher Potts ◽  
Matei Zaharia

Abstract Systems for Open-Domain Question Answering (OpenQA) generally depend on a retriever for finding candidate passages in a large corpus and a reader for extracting answers from those passages. In much recent work, the retriever is a learned component that uses coarse-grained vector representations of questions and passages. We argue that this modeling choice is insufficiently expressive for dealing with the complexity of natural language questions. To address this, we define ColBERT-QA, which adapts the scalable neural retrieval model ColBERT to OpenQA. ColBERT creates fine-grained interactions between questions and passages. We propose an efficient weak supervision strategy that iteratively uses ColBERT to create its own training data. This greatly improves OpenQA retrieval on Natural Questions, SQuAD, and TriviaQA, and the resulting system attains state-of-the-art extractive OpenQA performance on all three datasets.


Author(s):  
Shaolei Wang ◽  
Zhongyuan Wang ◽  
Wanxiang Che ◽  
Sendong Zhao ◽  
Ting Liu

Spoken language is fundamentally different from the written language in that it contains frequent disfluencies or parts of an utterance that are corrected by the speaker. Disfluency detection (removing these disfluencies) is desirable to clean the input for use in downstream NLP tasks. Most existing approaches to disfluency detection heavily rely on human-annotated data, which is scarce and expensive to obtain in practice. To tackle the training data bottleneck, in this work, we investigate methods for combining self-supervised learning and active learning for disfluency detection. First, we construct large-scale pseudo training data by randomly adding or deleting words from unlabeled data and propose two self-supervised pre-training tasks: (i) a tagging task to detect the added noisy words and (ii) sentence classification to distinguish original sentences from grammatically incorrect sentences. We then combine these two tasks to jointly pre-train a neural network. The pre-trained neural network is then fine-tuned using human-annotated disfluency detection training data. The self-supervised learning method can capture task-special knowledge for disfluency detection and achieve better performance when fine-tuning on a small annotated dataset compared to other supervised methods. However, limited in that the pseudo training data are generated based on simple heuristics and cannot fully cover all the disfluency patterns, there is still a performance gap compared to the supervised models trained on the full training dataset. We further explore how to bridge the performance gap by integrating active learning during the fine-tuning process. Active learning strives to reduce annotation costs by choosing the most critical examples to label and can address the weakness of self-supervised learning with a small annotated dataset. We show that by combining self-supervised learning with active learning, our model is able to match state-of-the-art performance with just about 10% of the original training data on both the commonly used English Switchboard test set and a set of in-house annotated Chinese data.


Author(s):  
Chenggang Yan ◽  
Tong Teng ◽  
Yutao Liu ◽  
Yongbing Zhang ◽  
Haoqian Wang ◽  
...  

The difficulty of no-reference image quality assessment (NR IQA) often lies in the lack of knowledge about the distortion in the image, which makes quality assessment blind and thus inefficient. To tackle such issue, in this article, we propose a novel scheme for precise NR IQA, which includes two successive steps, i.e., distortion identification and targeted quality evaluation. In the first step, we employ the well-known Inception-ResNet-v2 neural network to train a classifier that classifies the possible distortion in the image into the four most common distortion types, i.e., Gaussian white noise (WN), Gaussian blur (GB), jpeg compression (JPEG), and jpeg2000 compression (JP2K). Specifically, the deep neural network is trained on the large-scale Waterloo Exploration database, which ensures the robustness and high performance of distortion classification. In the second step, after determining the distortion type of the image, we then design a specific approach to quantify the image distortion level, which can estimate the image quality specially and more precisely. Extensive experiments performed on LIVE, TID2013, CSIQ, and Waterloo Exploration databases demonstrate that (1) the accuracy of our distortion classification is higher than that of the state-of-the-art distortion classification methods, and (2) the proposed NR IQA method outperforms the state-of-the-art NR IQA methods in quantifying the image quality.


Sign in / Sign up

Export Citation Format

Share Document