scholarly journals EHSOD: CAM-Guided End-to-End Hybrid-Supervised Object Detection with Cascade Refinement

2020 ◽  
Vol 34 (07) ◽  
pp. 10778-10785
Author(s):  
Linpu Fang ◽  
Hang Xu ◽  
Zhili Liu ◽  
Sarah Parisot ◽  
Zhenguo Li

Object detectors trained on fully-annotated data currently yield state of the art performance but require expensive manual annotations. On the other hand, weakly-supervised detectors have much lower performance and cannot be used reliably in a realistic setting. In this paper, we study the hybrid-supervised object detection problem, aiming to train a high quality detector with only a limited amount of fully-annotated data and fully exploiting cheap data with image-level labels. State of the art methods typically propose an iterative approach, alternating between generating pseudo-labels and updating a detector. This paradigm requires careful manual hyper-parameter tuning for mining good pseudo labels at each round and is quite time-consuming. To address these issues, we present EHSOD, an end-to-end hybrid-supervised object detection system which can be trained in one shot on both fully and weakly-annotated data. Specifically, based on a two-stage detector, we proposed two modules to fully utilize the information from both kinds of labels: 1) CAM-RPN module aims at finding foreground proposals guided by a class activation heat-map; 2) hybrid-supervised cascade module further refines the bounding-box position and classification with the help of an auxiliary head compatible with image-level data. Extensive experiments demonstrate the effectiveness of the proposed method and it achieves comparable results on multiple object detection benchmarks with only 30% fully-annotated data, e.g. 37.5% mAP on COCO. We will release the code and the trained models.

2021 ◽  
Vol 11 (11) ◽  
pp. 4894
Author(s):  
Anna Scius-Bertrand ◽  
Michael Jungo ◽  
Beat Wolf ◽  
Andreas Fischer ◽  
Marc Bui

The current state of the art for automatic transcription of historical manuscripts is typically limited by the requirement of human-annotated learning samples, which are are necessary to train specific machine learning models for specific languages and scripts. Transcription alignment is a simpler task that aims to find a correspondence between text in the scanned image and its existing Unicode counterpart, a correspondence which can then be used as training data. The alignment task can be approached with heuristic methods dedicated to certain types of manuscripts, or with weakly trained systems reducing the required amount of annotations. In this article, we propose a novel learning-based alignment method based on fully convolutional object detection that does not require any human annotation at all. Instead, the object detection system is initially trained on synthetic printed pages using a font and then adapted to the real manuscripts by means of self-training. On a dataset of historical Vietnamese handwriting, we demonstrate the feasibility of annotation-free alignment as well as the positive impact of self-training on the character detection accuracy, reaching a detection accuracy of 96.4% with a YOLOv5m model without using any human annotation.


Author(s):  
Baisheng Lai ◽  
Xiaojin Gong

Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To address this issue, this paper integrates saliency into a deep architecture, in which the location information is explored both explicitly and implicitly. Specifically, we select highly confident object proposals under the guidance of class-specific saliency maps. The location information, together with semantic and saliency information, of the select proposals are then used to explicitly supervise the network by imposing two additional losses. Meanwhile, a saliency prediction sub-network is built in the architecture. The prediction results are used to implicitly guide the localization procedure. The entire network is trained end-to-end. Experiments on PASCAL VOC demonstrate that our approach outperforms all state-of-the-arts.


Author(s):  
Muhammad Ahmed ◽  
Khurram Azeem Hashmi ◽  
Alain Pagani ◽  
Marcus Liwicki ◽  
Didier Stricker ◽  
...  

Recent progress in deep learning has led to accurate and efficient generic object detection networks. Training of highly reliable models depends on large datasets with highly textured and rich images. However, in real-world scenarios, the performance of the generic object detection system decreases when (i) occlusions hide the objects, (ii) objects are present in low-light images, or (iii) they are merged with background information. In this paper, we refer to all these situations as challenging environments. With the recent rapid development in generic object detection algorithms, notable progress has been observed in the field of object detection in challenging environments. However, there is no consolidated reference to cover state-of-the-art in this domain. To the best of our knowledge, this paper presents the first comprehensive overview, covering recent approaches that have tackled the problem of object detection in challenging environments. Furthermore, we present the quantitative and qualitative performance analysis of these approaches and discuss the currently available challenging datasets. Moreover, this paper investigates the performance of current state-of-the-art generic object detection algorithms by benchmarking results on the three well-known challenging datasets. Finally, we highlight several current shortcomings and outline future directions.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1213
Author(s):  
Xiaoke Shen ◽  
Ioannis Stamos

Instance segmentation and object detection are significant problems in the fields of computer vision and robotics. We address those problems by proposing a novel object segmentation and detection system. First, we detect 2D objects based on RGB, depth only, or RGB-D images. A 3D convolutional-based system, named Frustum VoxNet, is proposed. This system generates frustums from 2D detection results, proposes 3D candidate voxelized images for each frustum, and uses a 3D convolutional neural network (CNN) based on these candidates voxelized images to perform the 3D instance segmentation and object detection. Results on the SUN RGB-D dataset show that our RGB-D-based system’s 3D inference is much faster than state-of-the-art methods, without a significant loss of accuracy. At the same time, we can provide segmentation and detection results using depth only images, with accuracy comparable to RGB-D-based systems. This is important since our methods can also work well in low lighting conditions, or with sensors that do not acquire RGB images. Finally, the use of segmentation as part of our pipeline increases detection accuracy, while providing at the same time 3D instance segmentation.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5116
Author(s):  
Muhammad Ahmed ◽  
Khurram Azeem Hashmi ◽  
Alain Pagani ◽  
Marcus Liwicki ◽  
Didier Stricker ◽  
...  

Recent progress in deep learning has led to accurate and efficient generic object detection networks. Training of highly reliable models depends on large datasets with highly textured and rich images. However, in real-world scenarios, the performance of the generic object detection system decreases when (i) occlusions hide the objects, (ii) objects are present in low-light images, or (iii) they are merged with background information. In this paper, we refer to all these situations as challenging environments. With the recent rapid development in generic object detection algorithms, notable progress has been observed in the field of deep learning-based object detection in challenging environments. However, there is no consolidated reference to cover the state of the art in this domain. To the best of our knowledge, this paper presents the first comprehensive overview, covering recent approaches that have tackled the problem of object detection in challenging environments. Furthermore, we present a quantitative and qualitative performance analysis of these approaches and discuss the currently available challenging datasets. Moreover, this paper investigates the performance of current state-of-the-art generic object detection algorithms by benchmarking results on the three well-known challenging datasets. Finally, we highlight several current shortcomings and outline future directions.


2020 ◽  
Vol 34 (07) ◽  
pp. 11482-11489
Author(s):  
Chenhao Lin ◽  
Siwen Wang ◽  
Dongqi Xu ◽  
Yu Lu ◽  
Wayne Zhang

Weakly supervised object detection (WSOD) using only image-level annotations has attracted growing attention over the past few years. Existing approaches using multiple instance learning easily fall into local optima, because such mechanism tends to learn from the most discriminative object in an image for each category. Therefore, these methods suffer from missing object instances which degrade the performance of WSOD. To address this problem, this paper introduces an end-to-end object instance mining (OIM) framework for weakly supervised object detection. OIM attempts to detect all possible object instances existing in each image by introducing information propagation on the spatial and appearance graphs, without any additional annotations. During the iterative learning process, the less discriminative object instances from the same class can be gradually detected and utilized for training. In addition, we design an object instance reweighted loss to learn larger portion of each object instance to further improve the performance. The experimental results on two publicly available databases, VOC 2007 and 2012, demonstrate the efficacy of proposed approach.


2020 ◽  
Vol 34 (07) ◽  
pp. 12765-12772
Author(s):  
Bingfeng Zhang ◽  
Jimin Xiao ◽  
Yunchao Wei ◽  
Mingjie Sun ◽  
Kaizhu Huang

Weakly supervised semantic segmentation is a challenging task as it only takes image-level information as supervision for training but produces pixel-level predictions for testing. To address such a challenging task, most recent state-of-the-art approaches propose to adopt two-step solutions, i.e. 1) learn to generate pseudo pixel-level masks, and 2) engage FCNs to train the semantic segmentation networks with the pseudo masks. However, the two-step solutions usually employ many bells and whistles in producing high-quality pseudo masks, making this kind of methods complicated and inelegant. In this work, we harness the image-level labels to produce reliable pixel-level annotations and design a fully end-to-end network to learn to predict segmentation maps. Concretely, we firstly leverage an image classification branch to generate class activation maps for the annotated categories, which are further pruned into confident yet tiny object/background regions. Such reliable regions are then directly served as ground-truth labels for the parallel segmentation branch, where a newly designed dense energy loss function is adopted for optimization. Despite its apparent simplicity, our one-step solution achieves competitive mIoU scores (val: 62.6, test: 62.9) on Pascal VOC compared with those two-step state-of-the-arts. By extending our one-step method to two-step, we get a new state-of-the-art performance on the Pascal VOC (val: 66.3, test: 66.5).


2020 ◽  
Vol 34 (07) ◽  
pp. 10451-10459
Author(s):  
Kyungjune Baek ◽  
Minhyun Lee ◽  
Hyunjung Shim

Existing co-localization techniques significantly lose performance over weakly or fully supervised methods in accuracy and inference time. In this paper, we overcome common drawbacks of co-localization techniques by utilizing self-supervised learning approach. The major technical contributions of the proposed method are two-fold. 1) We devise a new geometric transformation, namely point symmetric transformation and utilize its parameters as an artificial label for self-supervised learning. This new transformation can also play the role of region-drop based regularization. 2) We suggest a heat map extraction method for computing the heat map from the network trained by self-supervision, namely class-agnostic activation mapping. It is done by computing the spatial attention map. Based on extensive evaluations, we observe that the proposed method records new state-of-the-art performance in three fine-grained datasets for unsupervised object localization. Moreover, we show that the idea of the proposed method can be adopted in a modified manner to solve the weakly supervised object localization task. As a result, we outperform the current state-of-the-art technique in weakly supervised object localization by a significant gap.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1205
Author(s):  
Mohammed Algabri ◽  
Hassan Mathkour ◽  
Mansour M. Alsulaiman ◽  
Mohamed A. Bencherif

This study proposes using object detection techniques to recognize sequences of articulatory features (AFs) from speech utterances by treating AFs of phonemes as multi-label objects in speech spectrogram. The proposed system, called AFD-Obj, recognizes sequence of multi-label AFs in speech signal and localizes them. AFD-Obj consists of two main stages: firstly, we formulate the problem of AFs detection as an object detection problem and prepare the data to fulfill requirement of object detectors by generating a spectral three-channel image from the speech signal and creating the corresponding annotation for each utterance. Secondly, we use annotated images to train the proposed system to detect sequences of AFs and their boundaries. We test the system by feeding spectrogram images to the system, which will recognize and localize multi-label AFs. We investigated using these AFs to detect the utterance phonemes. YOLOv3-tiny detector is selected because of its real-time property and its support for multi-label detection. We test our AFD-Obj system on Arabic and English languages using KAPD and TIMIT corpora, respectively. Additionally, we propose using YOLOv3-tiny as an Arabic phoneme detection system (i.e., PD-Obj) to recognize and localize a sequence of Arabic phonemes from whole speech utterances. The proposed AFD-Obj and PD-Obj systems achieve excellent results for Arabic corpus and comparable to the state-of-the-art method for English corpus. Moreover, we showed that using only one-scale detection is suitable for AFs detection or phoneme recognition.


Sign in / Sign up

Export Citation Format

Share Document