scholarly journals Improving Lives of Indebted Farmers Using Deep Learning: Predicting Agricultural Produce Prices Using Convolutional Neural Networks

2020 ◽  
Vol 34 (08) ◽  
pp. 13294-13299
Author(s):  
Hangzhi Guo ◽  
Alexander Woodruff ◽  
Amulya Yadav

Farmer suicides have become an urgent social problem which governments around the world are trying hard to solve. Most farmers are driven to suicide due to an inability to sell their produce at desired profit levels, which is caused by the widespread uncertainty/fluctuation in produce prices resulting from varying market conditions. To prevent farmer suicides, this paper takes the first step towards resolving the issue of produce price uncertainty by presenting PECAD, a deep learning algorithm for accurate prediction of future produce prices based on past pricing and volume patterns. While previous work presents machine learning algorithms for prediction of produce prices, they suffer from two limitations: (i) they do not explicitly consider the spatio-temporal dependence of future prices on past data; and as a result, (ii) they rely on classical ML prediction models which often perform poorly when applied to spatio-temporal datasets. PECAD addresses these limitations via three major contributions: (i) we gather real-world daily price and (produced) volume data of different crops over a period of 11 years from an official Indian government administered website; (ii) we pre-process this raw dataset via state-of-the-art imputation techniques to account for missing data entries; and (iii) PECAD proposes a novel wide and deep neural network architecture which consists of two separate convolutional neural network models (trained for pricing and volume data respectively). Our simulation results show that PECAD outperforms existing state-of-the-art baseline methods by achieving significantly lesser root mean squared error (RMSE) - PECAD achieves ∼25% lesser coefficient of variance than state-of-the-art baselines. Our work is done in collaboration with a non-profit agency that works on preventing farmer suicides in the Indian state of Jharkhand, and PECAD is currently being reviewed by them for potential deployment.

Author(s):  
Shaun C. D'Souza

Cognitive neuroscience is the study of how the human brain functions on tasks like decision making, language, perception and reasoning. Deep learning is a class of machine learning algorithms that use neural networks. They are designed to model the responses of neurons in the human brain. Learning can be supervised or unsupervised. Ngram token models are used extensively in language prediction. Ngrams are probabilistic models that are used in predicting the next word or token. They are a statistical model of word sequences or tokens and are called Language Models or Lms. Ngrams are essential in creating language prediction models. We are exploring a broader sandbox ecosystems enabling for AI. Specifically, around Deep learning applications on unstructured content form on the web.


2021 ◽  
Vol 21 (S2) ◽  
Author(s):  
Xiaoming Yu ◽  
Yedan Shen ◽  
Yuan Ni ◽  
Xiaowei Huang ◽  
Xiaolong Wang ◽  
...  

Abstract Background Text Matching (TM) is a fundamental task of natural language processing widely used in many application systems such as information retrieval, automatic question answering, machine translation, dialogue system, reading comprehension, etc. In recent years, a large number of deep learning neural networks have been applied to TM, and have refreshed benchmarks of TM repeatedly. Among the deep learning neural networks, convolutional neural network (CNN) is one of the most popular networks, which suffers from difficulties in dealing with small samples and keeping relative structures of features. In this paper, we propose a novel deep learning architecture based on capsule network for TM, called CapsTM, where capsule network is a new type of neural network architecture proposed to address some of the short comings of CNN and shows great potential in many tasks. Methods CapsTM is a five-layer neural network, including an input layer, a representation layer, an aggregation layer, a capsule layer and a prediction layer. In CapsTM, two pieces of text are first individually converted into sequences of embeddings and are further transformed by a highway network in the input layer. Then, Bidirectional Long Short-Term Memory (BiLSTM) is used to represent each piece of text and attention-based interaction matrix is used to represent interactive information of the two pieces of text in the representation layer. Subsequently, the two kinds of representations are fused together by BiLSTM in the aggregation layer, and are further represented with capsules (vectors) in the capsule layer. Finally, the prediction layer is a connected network used for classification. CapsTM is an extension of ESIM by adding a capsule layer before the prediction layer. Results We construct a corpus of Chinese medical question matching, which contains 36,360 question pairs. This corpus is randomly split into three parts: a training set of 32,360 question pairs, a development set of 2000 question pairs and a test set of 2000 question pairs. On this corpus, we conduct a series of experiments to evaluate the proposed CapsTM and compare it with other state-of-the-art methods. CapsTM achieves the highest F-score of 0.8666. Conclusion The experimental results demonstrate that CapsTM is effective for Chinese medical question matching and outperforms other state-of-the-art methods for comparison.


The applications of a content-based image retrieval system in fields such as multimedia, security, medicine, and entertainment, have been implemented on a huge real-time database by using a convolutional neural network architecture. In general, thus far, content-based image retrieval systems have been implemented with machine learning algorithms. A machine learning algorithm is applicable to a limited database because of the few feature extraction hidden layers between the input and the output layers. The proposed convolutional neural network architecture was successfully implemented using 128 convolutional layers, pooling layers, rectifier linear unit (ReLu), and fully connected layers. A convolutional neural network architecture yields better results of its ability to extract features from an image. The Euclidean distance metric is used for calculating the similarity between the query image and the database images. It is implemented using the COREL database. The proposed system is successfully evaluated using precision, recall, and F-score. The performance of the proposed method is evaluated using the precision and recall.


2018 ◽  
Author(s):  
Shaun C. D'Souza

Cognitive neuroscience is the study of how the human brain functions on tasks like decision making, language, perception and reasoning. Deep learning is a class of machine learning algorithms that use neural networks. They are designed to model the responses of neurons in the human brain. Learning can be supervised or unsupervised. Ngram token models are used extensively in language prediction. Ngrams are probabilistic models that are used in predicting the next word or token. They are a statistical model of word sequences or tokens and are called Language Models or Lms. Ngrams are essential in creating language prediction models. We are exploring a broader sandbox ecosystems enabling for AI. Specifically, around Deep learning applications on unstructured content form on the web.


2020 ◽  
Vol 12 (11) ◽  
pp. 1838 ◽  
Author(s):  
Zhao Zhang ◽  
Paulo Flores ◽  
C. Igathinathane ◽  
Dayakar L. Naik ◽  
Ravi Kiran ◽  
...  

The current mainstream approach of using manual measurements and visual inspections for crop lodging detection is inefficient, time-consuming, and subjective. An innovative method for wheat lodging detection that can overcome or alleviate these shortcomings would be welcomed. This study proposed a systematic approach for wheat lodging detection in research plots (372 experimental plots), which consisted of using unmanned aerial systems (UAS) for aerial imagery acquisition, manual field evaluation, and machine learning algorithms to detect the occurrence or not of lodging. UAS imagery was collected on three different dates (23 and 30 July 2019, and 8 August 2019) after lodging occurred. Traditional machine learning and deep learning were evaluated and compared in this study in terms of classification accuracy and standard deviation. For traditional machine learning, five types of features (i.e. gray level co-occurrence matrix, local binary pattern, Gabor, intensity, and Hu-moment) were extracted and fed into three traditional machine learning algorithms (i.e., random forest (RF), neural network, and support vector machine) for detecting lodged plots. For the datasets on each imagery collection date, the accuracies of the three algorithms were not significantly different from each other. For any of the three algorithms, accuracies on the first and last date datasets had the lowest and highest values, respectively. Incorporating standard deviation as a measurement of performance robustness, RF was determined as the most satisfactory. Regarding deep learning, three different convolutional neural networks (simple convolutional neural network, VGG-16, and GoogLeNet) were tested. For any of the single date datasets, GoogLeNet consistently had superior performance over the other two methods. Further comparisons between RF and GoogLeNet demonstrated that the detection accuracies of the two methods were not significantly different from each other (p > 0.05); hence, the choice of any of the two would not affect the final detection accuracies. However, considering the fact that the average accuracy of GoogLeNet (93%) was larger than RF (91%), it was recommended to use GoogLeNet for wheat lodging detection. This research demonstrated that UAS RGB imagery, coupled with the GoogLeNet machine learning algorithm, can be a novel, reliable, objective, simple, low-cost, and effective (accuracy > 90%) tool for wheat lodging detection.


2014 ◽  
Vol 641-642 ◽  
pp. 1287-1290
Author(s):  
Lan Zhang ◽  
Yu Feng Nie ◽  
Zhen Hai Wang

Deep neural network as a part of deep learning algorithm is a state-of-the-art approach to find higher level representations of input data which has been introduced to many practical and challenging learning problems successfully. The primary goal of deep learning is to use large data to help solving a given task on machine learning. We propose an methodology for image de-noising project defined by this model and conduct training a large image database to get the experimental output. The result shows the robustness and efficient our our algorithm.


2020 ◽  
Vol 3 (2) ◽  
pp. 177-178
Author(s):  
John Jowil D. Orquia ◽  
El Jireh Bibangco

Manual Fruit classification is the traditional way of classifying fruits. It is manual contact-labor that is time-consuming and often results in lesser productivity, inconsistency, and sometimes damaging the fruits (Prabha & Kumar, 2012). Thus, new technologies such as deep learning paved the way for a faster and more efficient method of fruit classification (Faridi & Aboonajmi, 2017). A deep convolutional neural network, or deep learning, is a machine learning algorithm that contains several layers of neural networks stacked together to create a more complex model capable of solving complex problems. The utilization of state-of-the-art pre-trained deep learning models such as AlexNet, GoogLeNet, and ResNet-50 was widely used. However, such models were not explicitly trained for fruit classification (Dyrmann, Karstoft, & Midtiby, 2016). The study aimed to create a new deep convolutional neural network and compared its performance to fine-tuned models based on accuracy, precision, sensitivity, and specificity.


Large data clustering and classification is a very challenging task in data mining. Various machine learning and deep learning systems have been proposed by many researchers on a different dataset. Data volume, data size and structure of data may affect the time complexity of the system. This paper described a new document object classification approach using deep learning (DL) and proposed a recurrent neural network (RNN) for classification with a micro-clustering approach.TF-IDF and a density-based approach are used to store the best features. The plane work used supervised learning method and it extracts features set called as BK of the desired classes. once the training part completed then proceeds to figure out the particular test instances with the help of the planned classification algorithm. Recurrent Neural Network categorized the particular test object according to their weights. The system can able to work on heterogeneous data set and generate the micro-clusters according to classified results. The system also carried out experimental analysis with classical machine learning algorithms. The proposed algorithm shows higher accuracy than the existing density-based approach on different data sets.


Author(s):  
Daniel Ray ◽  
Tim Collins ◽  
Prasad Ponnapalli

Extracting accurate heart rate estimations from wrist-worn photoplethysmography (PPG) devices is challenging due to the signal containing artifacts from several sources. Deep Learning approaches have shown very promising results outperforming classical methods with improvements of 21% and 31% on two state-of-the-art datasets. This paper provides an analysis of several data-driven methods for creating deep neural network architectures with hopes of further improvements.


Sign in / Sign up

Export Citation Format

Share Document