scholarly journals What is this Article about? Extreme Summarization with Topic-aware Convolutional Neural Networks

2019 ◽  
Vol 66 ◽  
pp. 243-278
Author(s):  
Shashi Narayan ◽  
Shay B. Cohen ◽  
Mirella Lapata

We introduce "extreme summarization," a new single-document summarization task which aims at creating a short, one-sentence news summary answering the question "What is the article about?". We argue that extreme summarization, by nature, is not amenable to extractive strategies and requires an abstractive modeling approach. In the hope of driving research on this task further: (a) we collect a real-world, large scale dataset by harvesting online articles from the British Broadcasting Corporation (BBC); and (b) propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans on the extreme summarization dataset.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Kongfan Zhu ◽  
Rundong Guo ◽  
Weifeng Hu ◽  
Zeqiang Li ◽  
Yujun Li

Legal judgment prediction (LJP), as an effective and critical application in legal assistant systems, aims to determine the judgment results according to the information based on the fact determination. In real-world scenarios, to deal with the criminal cases, judges not only take advantage of the fact description, but also consider the external information, such as the basic information of defendant and the court view. However, most existing works take the fact description as the sole input for LJP and ignore the external information. We propose a Transformer-Hierarchical-Attention-Multi-Extra (THME) Network to make full use of the information based on the fact determination. We conduct experiments on a real-world large-scale dataset of criminal cases in the civil law system. Experimental results show that our method outperforms state-of-the-art LJP methods on all judgment prediction tasks.


2019 ◽  
Vol 36 (2) ◽  
pp. 470-477 ◽  
Author(s):  
Badri Adhikari

Abstract Motivation Exciting new opportunities have arisen to solve the protein contact prediction problem from the progress in neural networks and the availability of a large number of homologous sequences through high-throughput sequencing. In this work, we study how deep convolutional neural networks (ConvNets) may be best designed and developed to solve this long-standing problem. Results With publicly available datasets, we designed and trained various ConvNet architectures. We tested several recent deep learning techniques including wide residual networks, dropouts and dilated convolutions. We studied the improvements in the precision of medium-range and long-range contacts, and compared the performance of our best architectures with the ones used in existing state-of-the-art methods. The proposed ConvNet architectures predict contacts with significantly more precision than the architectures used in several state-of-the-art methods. When trained using the DeepCov dataset consisting of 3456 proteins and tested on PSICOV dataset of 150 proteins, our architectures achieve up to 15% higher precision when L/2 long-range contacts are evaluated. Similarly, when trained using the DNCON2 dataset consisting of 1426 proteins and tested on 84 protein domains in the CASP12 dataset, our single network achieves 4.8% higher precision than the ensembled DNCON2 method when top L long-range contacts are evaluated. Availability and implementation DEEPCON is available at https://github.com/badriadhikari/DEEPCON/.


2020 ◽  
Vol 34 (04) ◽  
pp. 4626-4633 ◽  
Author(s):  
Jin Li ◽  
Xianglong Liu ◽  
Zhuofan Zong ◽  
Wanru Zhao ◽  
Mingyuan Zhang ◽  
...  

The recent advances in 3D Convolutional Neural Networks (3D CNNs) have shown promising performance for untrimmed video action detection, employing the popular detection framework that heavily relies on the temporal action proposal generations as the input of the action detector and localization regressor. In practice the proposals usually contain strong intra and inter relations among them, mainly stemming from the temporal and spatial variations in the video actions. However, most of existing 3D CNNs ignore the relations and thus suffer from the redundant proposals degenerating the detection performance and efficiency. To address this problem, we propose graph attention based proposal 3D ConvNets (AGCN-P-3DCNNs) for video action detection. Specifically, our proposed graph attention is composed of intra attention based GCN and inter attention based GCN. We use intra attention to learn the intra long-range dependencies inside each action proposal and update node matrix of Intra Attention based GCN, and use inter attention to learn the inter dependencies between different action proposals as adjacency matrix of Inter Attention based GCN. Afterwards, we fuse intra and inter attention to model intra long-range dependencies and inter dependencies simultaneously. Another contribution is that we propose a simple and effective framewise classifier, which enhances the feature presentation capabilities of backbone model. Experiments on two proposal 3D ConvNets based models (P-C3D and P-ResNet) and two popular action detection benchmarks (THUMOS 2014, ActivityNet v1.3) demonstrate the state-of-the-art performance achieved by our method. Particularly, P-C3D embedded with our module achieves average mAP 3.7% improvement on THUMOS 2014 dataset compared to original model.


2021 ◽  
Author(s):  
Salva Rühling Cachay ◽  
Emma Erickson ◽  
Arthur Fender C. Bucker ◽  
Ernest Pokropek ◽  
Willa Potosnak ◽  
...  

<p>Deep learning-based models have been recently shown to be competitive with, or even outperform, state-of-the-art long range forecasting models, such as for projecting the El Niño-Southern Oscillation (ENSO). However, current deep learning models are based on convolutional neural networks which are difficult to interpret and can fail to model large-scale dependencies, such as teleconnections, that are particularly important for long range projections. Hence, we propose to explicitly model large-scale dependencies with Graph Neural Networks (GNN) to enhance explainability and improve the predictive skill of long lead time forecasts.</p><p>In preliminary experiments focusing on ENSO, our GNN model outperforms previous state-of-the-art machine learning based systems for forecasts up to 6 months ahead. The explicit modeling of information flow via edges makes our model more explainable, and it is indeed shown to learn a sensible graph structure from scratch that correlates with the ENSO anomaly pattern for a given number of lead months.</p><p> </p>


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6733
Author(s):  
Hao Luo ◽  
Qingbo Wu ◽  
King Ngi Ngan ◽  
Hanxiao Luo ◽  
Haoran Wei ◽  
...  

Removing raindrops from a single image is a challenging problem due to the complex changes in shape, scale, and transparency among raindrops. Previous explorations have mainly been limited in two ways. First, publicly available raindrop image datasets have limited capacity in terms of modeling raindrop characteristics (e.g., raindrop collision and fusion) in real-world scenes. Second, recent deraining methods tend to apply shape-invariant filters to cope with diverse rainy images and fail to remove raindrops that are especially varied in shape and scale. In this paper, we address these raindrop removal problems from two perspectives. First, we establish a large-scale dataset named RaindropCityscapes, which includes 11,583 pairs of raindrop and raindrop-free images, covering a wide variety of raindrops and background scenarios. Second, a two-branch Multi-scale Shape Adaptive Network (MSANet) is proposed to detect and remove diverse raindrops, effectively filtering the occluded raindrop regions and keeping the clean background well-preserved. Extensive experiments on synthetic and real-world datasets demonstrate that the proposed method achieves significant improvements over the recent state-of-the-art raindrop removal methods. Moreover, the extension of our method towards the rainy image segmentation and detection tasks validates the practicality of the proposed method in outdoor applications.


2020 ◽  
Vol 10 (22) ◽  
pp. 7982
Author(s):  
Lorenzo Putzu ◽  
Giorgio Fumera

Cell nuclei segmentation is a challenging task, especially in real applications, when the target images significantly differ between them. This task is also challenging for methods based on convolutional neural networks (CNNs), which have recently boosted the performance of cell nuclei segmentation systems. However, when training data are scarce or not representative of deployment scenarios, they may suffer from overfitting to a different extent, and may hardly generalise to images that differ from the ones used for training. In this work, we focus on real-world, challenging application scenarios when no annotated images from a given dataset are available, or when few images (even unlabelled) of the same domain are available to perform domain adaptation. To simulate this scenario, we performed extensive cross-dataset experiments on several CNN-based state-of-the-art cell nuclei segmentation methods. Our results show that some of the existing CNN-based approaches are capable of generalising to target images which resemble the ones used for training. In contrast, their effectiveness considerably degrades when target and source significantly differ in colours and scale.


Author(s):  
Xiuying Chen ◽  
Zhangming Chan ◽  
Shen Gao ◽  
Meng-Hsuan Yu ◽  
Dongyan Zhao ◽  
...  

Timeline summarization targets at concisely summarizing the evolution trajectory along the timeline and existing timeline summarization approaches are all based on extractive methods.In this paper, we propose the task of abstractive timeline summarization, which tends to concisely paraphrase the information in the time-stamped events.Unlike traditional document summarization, timeline summarization needs to model the time series information of the input events and summarize important events in chronological order.To tackle this challenge, we propose a memory-based timeline summarization model (MTS).Concretely, we propose a time-event memory to establish a timeline, and use the time position of events on this timeline to guide generation process.Besides, in each decoding step, we incorporate event-level information into word-level attention to avoid confusion between events.Extensive experiments are conducted on a large-scale real-world dataset, and the results show that MTS achieves the state-of-the-art performance in terms of both automatic and human evaluations.


Author(s):  
Jorge F. Lazo ◽  
Aldo Marzullo ◽  
Sara Moccia ◽  
Michele Catellani ◽  
Benoit Rosa ◽  
...  

Abstract Purpose Ureteroscopy is an efficient endoscopic minimally invasive technique for the diagnosis and treatment of upper tract urothelial carcinoma. During ureteroscopy, the automatic segmentation of the hollow lumen is of primary importance, since it indicates the path that the endoscope should follow. In order to obtain an accurate segmentation of the hollow lumen, this paper presents an automatic method based on convolutional neural networks (CNNs). Methods The proposed method is based on an ensemble of 4 parallel CNNs to simultaneously process single and multi-frame information. Of these, two architectures are taken as core-models, namely U-Net based in residual blocks ($$m_1$$ m 1 ) and Mask-RCNN ($$m_2$$ m 2 ), which are fed with single still-frames I(t). The other two models ($$M_1$$ M 1 , $$M_2$$ M 2 ) are modifications of the former ones consisting on the addition of a stage which makes use of 3D convolutions to process temporal information. $$M_1$$ M 1 , $$M_2$$ M 2 are fed with triplets of frames ($$I(t-1)$$ I ( t - 1 ) , I(t), $$I(t+1)$$ I ( t + 1 ) ) to produce the segmentation for I(t). Results The proposed method was evaluated using a custom dataset of 11 videos (2673 frames) which were collected and manually annotated from 6 patients. We obtain a Dice similarity coefficient of 0.80, outperforming previous state-of-the-art methods. Conclusion The obtained results show that spatial-temporal information can be effectively exploited by the ensemble model to improve hollow lumen segmentation in ureteroscopic images. The method is effective also in the presence of poor visibility, occasional bleeding, or specular reflections.


2021 ◽  
Vol 7 (3) ◽  
pp. 50
Author(s):  
Anselmo Ferreira ◽  
Ehsan Nowroozi ◽  
Mauro Barni

The possibility of carrying out a meaningful forensic analysis on printed and scanned images plays a major role in many applications. First of all, printed documents are often associated with criminal activities, such as terrorist plans, child pornography, and even fake packages. Additionally, printing and scanning can be used to hide the traces of image manipulation or the synthetic nature of images, since the artifacts commonly found in manipulated and synthetic images are gone after the images are printed and scanned. A problem hindering research in this area is the lack of large scale reference datasets to be used for algorithm development and benchmarking. Motivated by this issue, we present a new dataset composed of a large number of synthetic and natural printed face images. To highlight the difficulties associated with the analysis of the images of the dataset, we carried out an extensive set of experiments comparing several printer attribution methods. We also verified that state-of-the-art methods to distinguish natural and synthetic face images fail when applied to print and scanned images. We envision that the availability of the new dataset and the preliminary experiments we carried out will motivate and facilitate further research in this area.


Sign in / Sign up

Export Citation Format

Share Document