Evolved resistance to acetolactate synthase–inhibiting herbicides in common sunflower (Helianthus annuus), giant ragweed (Ambrosia trifida), and shattercane (Sorghum bicolor) in Iowa

Weed Science ◽  
2004 ◽  
Vol 52 (4) ◽  
pp. 538-548 ◽  
Author(s):  
Ian A. Zelaya ◽  
Micheal D. K. Owen

Weed biotypes putatively resistant to acetolactate synthase (ALS)–inhibiting herbicides were reported by Iowa farmers from 1997 to 2001. Greenhouse studies confirmed cross-resistance to triazolopyrimidine sulfonanilide and sulfonylurea (SU) herbicides in giant ragweed from Scott County, IA (Werner Farm), which corresponded to resistance to susceptibility (R:S) GR50(50% growth reduction) ratios of 21 and 28 to cloransulam and primisulfuron + prosulfuron, respectively. At the enzyme level, this represented a 49- and 20-foldI50(50% enzyme inhibition) increase. Cross-resistance to imidazolinone (IMI) and SU herbicides was also observed in common sunflower from Cherokee, IA. Compared with a susceptible biotype, the resistant common sunflower biotype demonstrated GR50R:S ratios of 36 and 43 to imazethapyr and chlorimuron, respectively. Shattercane from Malvern, IA, was susceptible to nicosulfuron but was resistant to imazethapyr (GR50R:S ratio = 29). The woolly cupgrass biotypes from Union County, IA (Pettit Farm and Travis Farm), were reportedly resistant but were identified susceptible to both IMI and SU herbicides. Using an in vivo ALS assay, extractable endogenous 2,3-diketone concentrations ranged from 25 to 71 nmol g−1fresh weight for all species. Compared with susceptible biotypes, 2,3-diketone levels accumulated to at least twofold higher levels in treated resistant plants 120 h after herbicide application. Field history data suggested that resistance evolved independently in three environments where ALS-inhibiting herbicides represented an important component of the selection pressure.

1997 ◽  
Vol 11 (2) ◽  
pp. 241-247 ◽  
Author(s):  
Christy L. Sprague ◽  
Edward W. Stoller ◽  
Loyd M. Wax

Five biotypes of common cocklebur that were not controlled with acetolactate synthase (ALS)-inhibiting herbicides were tested in greenhouse and laboratory studies to determine the magnitude of resistance and cross-resistance to four ALS-inhibiting herbicides. In vivo inhibition of ALS was also evaluated. Based on phytotoxicity, all five ALS-resistant biotypes of common cocklebur were > 390 times more resistant than the susceptible biotype to imazethapyr. However, only four of these biotypes were also resistant to another imidazolinone, imazaquin. Two biotypes were cross-resistant to the sulfonylurea, chlorimuron, and the triazolopyrimidine sulfonanilide, NAF-75. One biotype demonstrated intermediate susceptibility to imazaquin, chlorimuron, and NAF-75. In all cases, the resistance exhibited at the whole plant level was associated with an insensitive ALS.


2005 ◽  
Vol 83 (2) ◽  
pp. 99-109 ◽  
Author(s):  
D.S. Volenberg ◽  
D.E. Stoltenberg ◽  
C.M. Boerboom

Green foxtail (Setaria viridis) plants putatively resistant to acetolactate synthase (ALS) inhibitors were identified in a Wisconsin USA no-tillage soybean (Glycine max) field in 1999. Resistance to imidazolinone and sulfonylurea herbicides was characterized at the whole-plant level and enzyme level. Three- to four-leaf stage green foxtail plants were 1020, 53, and 6.5-fold resistant to imazethapyr, imazamox, and nicosulfuron, respectively, compared to susceptible plants. In vivo ALS was 1300 and 1.7-fold resistant to imazethapyr and nicosulfuron, respectively. These results suggested that this green foxtail accession was highly resistant to imazethapyr and imazamox, and that resistance was associated with an insensitive ALS enzyme.


2008 ◽  
Vol 22 (4) ◽  
pp. 602-608 ◽  
Author(s):  
Rodrigo Figueroa ◽  
Marlene Gebauer ◽  
Albert Fischer ◽  
Marcelo Kogan

Bensulfuron-methyl (BSM) has been one of the most widely used herbicides in Chilean rice fields because it controls a wide spectrum of weeds and does not require field drainage for application. However, failures of BSM to control water plantain in rice fields have been noted since 2002. We assessed BSM effects on suspected resistant (CU1 and CU2) and susceptible (AN1) water plantain accessions collected in Chilean rice fields during 2004 and 2005. BSM rates resulting in 50% growth reduction (GR50) of CU2 and CU1 plants were 12- and 33-fold higher than for AN1 plants, respectively. Acetolactate synthase (ALS) activity assays in vitro suggested resistance in CU1 and CU2 was due to an ALS enzyme with reduced BSM sensitivity compared to the AN1 biotype. Resistance indices (RI), or ratios of the resistant to susceptibleI50values (BSM rate to inhibit ALS-enzyme activity by 50%), were 266 (CU2/AN1) and > 38,462 (CU1/AN1). This agreed with in vivo ALS activity assays whereRIwere 224 (CU2/AN1) and > 8,533 (CU1/AN1). Resistance levels detected in whole-plant or in vivo ALS activity assays were orders of magnitude lower than those detected in in vitro ALS activity studies suggesting nontarget site mechanisms may have mitigated BSM toxicity. However, a consistent ranking of BSM sensitivity levels (AN1 > CU2 > CU1) throughout all three types of assays suggests resistance is primarily endowed by low target site sensitivity. We conclude that susceptible and resistant water plantain biotypes coexist in Chilean paddies, and the use of integrated weed management involving herbicides with a different mode of action would be imperative to prevent further evolution of resistance to BSM and possibly cross-resistance to other ALS inhibitors. In vitro ALS-enzyme assays provided the best discrimination of resistance levels between biotypes.


2012 ◽  
Vol 92 (2) ◽  
pp. 303-309 ◽  
Author(s):  
Kee Woong Park ◽  
Judith M. Kolkman ◽  
Carol A. Mallory-Smith

Park, K. W., Kolkman, J. M. and Mallory-Smith, C. A. 2012. Point mutation in acetolactate synthase confers sulfonylurea and imidazolinone herbicide resistance in spiny annual sow-thistle [Sonchus asper (L.) Hill]. Can. J. Plant Sci. 92: 303–309. Suspected thifensulfuron resistant spiny annual sow-thistle was identified near Colfax, Washington, in two fields with a winter wheat and lentil rotation. Therefore, studies were conducted to examine resistance of spiny annual sow-thistle to thifensulfuron and cross-resistance to other acetolactate synthase inhibitors and to determine the physiological and molecular basis for herbicide resistance. Whole-plant bioassay confirmed that the biotype was highly resistant to the sulfonylurea (SU) herbicides, thifensulfuron, metsulfuron, and prosulfuron. The resistant (R) biotype was also highly resistant to the imidazolinone (IMI) herbicides, imazamox and imazethapyr. An in vivo acetolactate synthase (ALS) assay indicated that the concentrations of SU and IMI herbicides required for 50% inhibition (I50) were more than 10 times greater for R biotype compared with susceptible (S) biotype. Analysis of the nucleotide and predicted amino acid sequences for ALS genes demonstrated a single-point mutation from C to T at the als1 gene, conferring the substitution of the amino acid leucine for proline in the R biotype at position197. The results of this research indicate that the resistance of spiny annual sow-thistle to SU and IMI herbicides is due to on altered target site and caused by a point mutation in the als1 gene.


2013 ◽  
Vol 57 (5) ◽  
pp. 2272-2280 ◽  
Author(s):  
Daryl L. Richie ◽  
Katherine V. Thompson ◽  
Christian Studer ◽  
Vivian C. Prindle ◽  
Thomas Aust ◽  
...  

ABSTRACTHigh-throughput phenotypic screening against the yeastSaccharomyces cerevisiaerevealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using theS. cerevisiaedeletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis inS. cerevisiaeidentified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocketin silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except forAspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypassin vivo.


2009 ◽  
Vol 23 (3) ◽  
pp. 470-476 ◽  
Author(s):  
Nikolaos S. Kaloumenos ◽  
Ilias G. Eleftherohorinos

A johnsongrass population from a cotton field in northern Greece along with a population from the university farm (“Control”) were evaluated for resistance to the herbicide quizalofop; cross-resistance to cycloxydim, propaquizafop, and fluazifop (acetyl coenzyme A [CoA] carboxylase [ACCase]-inhibiting herbicides), and multiple resistance to nicosulfuron (acetolactate synthase [ALS]-inhibiting herbicides). In greenhouse experiments, the application of four times the recommended rates of quizalofop and propaquizafop to suspected resistant rhizomatous plants resulted in 4 and 5% growth reduction, respectively. However, the growth of suspected resistant seedlings was reduced by 54 and 28% after the application of two times the recommended rate of the same herbicides. In contrast, the application of quizalofop and propaquizafop at recommended rates on rhizomatous plants and seedlings of the Control population reduced their growth by 97 to 100%. Also, the growth reduction of both populations by the application of cycloxydim, fluazifop, and nicosulfuron at recommended rates ranged from 93 to 100%. In the field experiment, quizalofop and propaquizafop applied at four times the recommended rate reduced growth of the suspected resistant population by 9 and 18%, respectively, whereas the recommended rate of fluazifop gave a 94% growth reduction of this weed. The herbicide rate required for 50% growth reduction (GR50) values for rhizomatous plants of the suspected resistant population were 0.90 and 2.465 kg ai/ha for quizalofop and propaquizafop, respectively, whereas the correspondingGR50values for the seedlings were 0.074 and 0.185 kg ai/ha. These results indicate that a johnsongrass population developed cross-resistance to quizalofop and propaquizafop, but did not evolve cross-resistance to cycloxydim and fluazifop or multiple resistance to nicosulfuron.


1996 ◽  
Vol 10 (4) ◽  
pp. 936-942 ◽  
Author(s):  
Sarah Taylor Lovell ◽  
Loyd M. Wax ◽  
David M. Simpson ◽  
Marshal McGlamery

An in vivo ALS assay was used to differentiate between susceptible and resistant kochia biotypes from Idaho and Montana. Experiments were also conducted using this assay to determine the effect of the timing of herbicide application on ALS activity in resistant and susceptible cocklebur biotypes from Mississippi. When treated with chlorsulfuron, resistant kochia biotypes demonstrated 160-and 170-fold resistance at the whole plant level for the Idaho and Montana biotypes, respectively, compared to susceptible biotypes. Using the in vivo ALS assay, the Idaho and Montana biotypes showed 70- and 490-fold resistance, respectively, based on I50values. The biotypes also demonstrated a low level of cross-resistance to imazethapyr using the in vivo technique. Resistant cocklebur biotypes showed approximately 200-fold resistance to imazaquin compared with susceptible biotypes. This research demonstrated that the in vivo assay can be used effectively to identify resistant biotypes 6 and 24 h after treatment, and to determine the extent of cross-resistance.


Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Stacey M. Marion ◽  
Vince M. Davis ◽  
David E. Stoltenberg

A giant ragweed population with putative resistance to cloransulam was identified in a long-term corn–soybean rotation located in southern Wisconsin. The population represented the first potential instance of giant ragweed resistance to acetolactate synthase (ALS) inhibitors in the state. Seeds were collected from several plants and pooled for subsequent experiments. Whole-plant dose–response experiments showed a high level of resistance (>500-fold) of the resistant (R) accession to cloransulam compared with a sensitive (S) accession. In vivo ALS bioassays showed that the target enzyme was 10.6- to 13.6-fold less sensitive to cloransulam in R than in S plants. Partial sequence analysis of the ALS gene found a tryptophan-to-leucine substitution at the 574 amino acid position (W574L) in the R phenotype. To better understand the potential fitness costs associated with the target-site substitution, replacement series experiments performed under greenhouse conditions characterized the relative growth, development, and fecundity of the R accession compared with an S accession in the absence of cloransulam. Growth over time did not differ between the R and S accessions for plant height during the vegetative phase (21 to 98 d after planting [DAP]) or for plant leaf area (21 to 80 DAP). At the estimated maximum, proportional shoot dry mass of each accession did not differ from theoretical proportions representing competitive equivalence, indicating no difference in vegetative competitive ability. Fecundity of R plants (430±53 seeds plant−1) did not differ from that of S plants (451±47 seeds plant−1), nor did seed viability (74 to 75% across accessions). This is the first report of equal competitive ability, fecundity, and seed viability between giant ragweed accessions R or S to cloransulam. The results suggest that the cloransulam resistance trait may persist and spread in the giant ragweed field population over time, even in the absence of selection by cloransulam.


2016 ◽  
Vol 30 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Zahoor A. Ganie ◽  
Lowell D. Sandell ◽  
Mithila Jugulam ◽  
Greg R. Kruger ◽  
David B. Marx ◽  
...  

Giant ragweed is one of the most competitive annual broadleaf weeds in soybean production fields in the midwestern United States and eastern Canada because of its early emergence, rapid growth rate, high plasticity, and resistance to glyphosate and acetolactate synthase inhibitors. Therefore, early-season management of giant ragweed is critical to avoid yield loss. The objectives of this study were to evaluate control of glyphosate-resistant giant ragweed through the integration of preplant tillage or 2,4-D; PRE or early POST (EPOST) followed by (fb) late POST (LPOST) herbicide programs with or without preplant tillage or 2,4-D; and their effect on soybean injury and yield. A field study was conducted in 2013 and 2014 in David City, NE in a field infested with glyphosate-resistant giant ragweed. Preplant tillage or 2,4-D application provided > 90% control of glyphosate-resistant giant ragweed 14 d after preplant treatment. Giant ragweed control and biomass reduction were consistently > 90% with preplant tillage or 2,4-D fb sulfentrazone plus cloransulam PRE or glyphosate plus cloransulam EPOST fb glyphosate plus fomesafen or lactofen LPOST compared with ≤ 86% control with same treatments without preplant tillage or 2,4-D. PRE or EPOST fb LPOST herbicide programs preceded by preplant treatments resulted in giant ragweed density < 2 plants m−2and soybean yield > 2,400 kg ha−1compared with the density of ≥ 2 plants m−2and soybean yield < 1,800 kg ha−1under PRE or EPOST fb LPOST herbicide programs. The contrast analysis also indicated that preplant tillage or 2,4-D fb a PRE or POST program was more effective for giant ragweed management compared with PRE fb POST herbicide programs. Integration of preplant tillage would provide an alternative method for early-season control of giant ragweed; however, a follow up application of herbicides is needed for season-long control in soybean.


2021 ◽  
Vol 30 (1) ◽  
pp. 5-18
Author(s):  
Sava Vrbničanin

Ambrosia trifida L. (AMBTR, fam. Asteraceae/Compositae) is native to North America. It was introduced accidentally to Europe at the end of the 19th century, with contaminated animal feed and seeds for planting. Today A. trifida is present in ruderal and agricultural habitats of many European countries (France, Italy, Germany, Russia, Spain, Romania, Slovakia, Czech Republic, Poland, Serbia, Bulgaria, etc.). Giant ragweed was detected for the first time in 1981 in Serbia (site Čoka). Over the following period it disappeared from this site, but was recorded again in 2006 in another site (central Bačka: Despotovo, Kucura, Savino Selo, Ravno Selo, Ruski Krstur). Currently in Serbia it has the status of an alien naturalized weed species. This summer annual plant can grow up to 6 m in height and exhibits a high degree of morphological and reproductive plasticity in response to encroachment by neighboring plants. It is present in disturbed habitats, such as agriculture fields, where it plays the role of the dominant species throughout the entire growing season. In most cases, leaves are opposite and always simple and generally have 3 distinct lobes but can also have as many as 5. It is a diploid (2n = 24), meso-hygrophilic species, preferring wet habitatse and can tolerate a wide variety of soil types. Also, this is a monoecious plant, where male and female flowers are separated on the same individual. A. trifida can hybridise with A. artemisiifolia (A. x helenae Rouleau, with 2n= 27 and 2n= 33), but this hybrid has been described as sterile. Compared to other summer annual species, A. trifida is among the first to emerge in early spring, at optimal temperatures from 10-24°C. Under optimal environmental conditions, giant ragweed produces around 1,800 (max 5,100) seeds plant-1. It flowers and bears fruit from July to September (October).The pollen of this species has allergenic potential. Additionally, in the USA and Canada giant ragweed populations have developed resistance to acetolactate synthase inhibitor herbicides and glyphosate. Giant ragweed can be a problematic weed in row crops (corn, soybean, sunflower, sugerbeet) and vegetables. In A. trifida the control measures should prevent further spread, and existing populations should be controlled by integrated weed management practices. Furthermore, A. trifida has a relatively low fecundity, a transient soil seedbank and a high percentage of non-viable or low-survivorship seeds, which are features that may have constrained its establishment and spread in the current environmental conditions in Serbia.


Sign in / Sign up

Export Citation Format

Share Document