Leaf characteristics and surfactants affect primisulfuron droplet spread in three broadleaf weeds

Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Debanjan Sanyal ◽  
Prasanta C. Bhowmik ◽  
Krishna N. Reddy

Laboratory studies were conducted to examine the leaf surface, epicuticular wax content, and spray droplet behavior on common lambsquarters, common purslane, and velvetleaf. Adaxial and abaxial leaf surfaces were examined using scanning electron microscopy, and leaf wax was extracted and quantified for all three weed species. The spread of 1-μl droplets of distilled water, primisulfuron solution (without surfactant), primisulfuron solution with a nonionic low foam wetter/spreader adjuvant (0.25% v/v), and with an organosilicone wetting agent (0.1% v/v) was determined on the adaxial leaf surfaces of each of the weed species. Glands and trichomes were present on both the adaxial and abaxial leaf surfaces of velvetleaf. Common purslane had neither glands nor trichomes on either side of the leaf. Common lambsquarters did not have any glands or trichomes, but it had globular bladder hairs on both adaxial and abaxial leaf surfaces. Stomata were present on both adaxial and abaxial leaf surfaces in all three weed species. Common purslane had a much lower number of stomata per unit area of leaf as compared with velvetleaf or common lambsquarters. Common lambsquarters had the highest epicuticular wax content on the leaf surface (274.5 μg cm−2), followed by common purslane (153.4 μg cm−2) and velvetleaf (7.4 μg cm−2). There were no significant variations in the spread of the 1-μl droplet of distilled water and primisulfuron (without adjuvant) among the species. Spread of primisulfuron droplets with surfactant was highest on the leaf surface of velvetleaf that had the lowest wax content. Droplet spread was greatest with organosilicone surfactant followed by the nonionic surfactant.

1996 ◽  
Vol 10 (2) ◽  
pp. 253-257 ◽  
Author(s):  
Joan A. Dusky ◽  
William M. Stall

Imazethapyr was evaluated PRE and POST in five lettuce types and chicory under Florida field conditions. The relative sensitivity of leafy crop vigor (most sensitive to most tolerant) to imazethapyr PRE, based on 20% inhibition determined using regression analysis, was as follows: Boston > bibb > crisphead > romaine > leaf > escarole > endive. Leafy crop injury increased as the rate of imazethapyr applied POST increased, with all leafy crops responding in a similar manner. Surfactant addition increased imazethapyr phytotoxicity. Imazethapyr PRE treatments at 0.067 kg ai/ha provided greater than 80% control of livid amaranth, common purslane, flatsedge, and common lambsquarters. Imazethapyr POST at 0.067 kg/ha, with surfactant provided control greater than 85% of all weed species. Greater than 85% spiny amaranth control was provided by imazethapyr POST at 0.017 kg/ha. Use of surfactant with imazethapyr did not improve spiny amaranth control over imazethapyr with no surfactant. POST treatments did not decrease leafy crop yield compared with the hand-weeded check. Imazethapyr applied PRE reduced crop yield compared to the POST treatments and the hand-weeded control.


Weed Science ◽  
1979 ◽  
Vol 27 (1) ◽  
pp. 7-10 ◽  
Author(s):  
R. B. Taylorson

AbstractGermination of seeds of 10 grass and 33 broadleaved weed species was examined for response to ethylene. Germination was promoted in nine species, inhibited in two, and not affected in the remainder. Of the species promoted, common purslane (Portulaca oleraceaL.), common lambsquarters (Chenopodium albumL.), and several Amaranths, including redroot pigweed (Amaranthus retroflexusL.), were affected most. Transformation of phytochrome to the active form (Pfr) gave interactions that ranged from none to syntergistic with the applied ethylene. In subsequent tests seeds of purslane, redroot pigweed, and giant foxtail (Setaria faberiHerrm.), a species not responsive to ethylene, were examined for germination response to 14 low molecular weight hydrocarbon gases other than ethylene. Some stimulation by the olefins propylene and propadiene was found for purslane and pigweed. Propionaldehyde and butyraldehyde were slightly stimulatory to purslane only.


2016 ◽  
Vol 38 (2) ◽  
pp. 215 ◽  
Author(s):  
Glenda Quaresma Ramos ◽  
Marta Duarte da Fonseca de Albuquerque ◽  
José Luiz Pinto Ferreira ◽  
Eduardo Adriano Cotta ◽  
Henrique Duarte da Fonseca Filho

Leaves surfaces, which represent an interface with plants and the environment, have several structures with specific functions. Some foliar properties, including wettability and mechanical containment, are inferred in terms of cellular adaptation and the presence or absence of cuticular wax. Various morphological parameters, ranging from macro- to nano scales, are analyzed and contribute to the study of taxonomy, pharmacognosy, and ecology of plants. The aim of this paper was to analyze the effect and influence of epicuticular wax granules on the hydrophobicity of Anacardium occidentale L. leaf surfaces. Leaf specimens were directly examined with an environmental scanning electron microscope without metal coating. Images revealed epidermis ornament, stomata type, was, and trichomes. Static contact angle between water and the surface was also measured on both sides. On the adaxial side, an angle of 104.09° ± 0.95° was found, suggesting that adaxial surface is hydrophobic. On the abaxial side, the angle was 62.20° ± 1.60°, which indicates a hydrophilic nature, probably because of the greater amount of epicuticular wax on the adaxial leaf surface. The present investigation provided an important contribution to morphological and ultrastructural characterization of leaves of cashew tree, which is a plant of great medicinal and economic importance. 


2005 ◽  
Vol 19 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Harlene M. Hatterman-Valenti

Few weed management options are available for juneberry, which has limited the potential for this new crop. Field trials were initiated at three locations in North Dakota to evaluate efficacy and crop safety associated with chemical and physical weed control treatments applied just before or immediately after transplanting. All treatments except norflurazon and trifluralin provided at least 85% control of redroot pigweed, common lambsquarters, common purslane, and yellow foxtail for the duration of the trial at Absaraka, ND, during 2001. Stinkgrass weed control 8 wk after treatment (WAT) dropped to unacceptable levels (<85%) with all treatments except azafenidin at 0.5 kg ai/ ha, norflurazon, and oxyfluorfen at 1.1 kg ai/ha at Dawson, ND, during 2001. However, juneberry injury 4 WAT by azafenidin at 0.5 kg/ha, flumioxazin at both locations, or azafenidin at 0.34 kg/ha and oxyfluorfen at 1.1 kg ai/ha at Absaraka, ND, was greater than observed for plants within the physical treatments. Juneberry injury generally decreased with time, yet remained >20% at 8 WAT for azafenidin and flumioxazin at Absaraka, ND, and for all treatments except the mulches at Dawson, ND. Plant injury 8 WAT at Absaraka in 2002 was 10% or less for all treatments and was lower compared with 2001. All physical treatments—azafenidin at 0.34 and 0.5 kg/ha, flumioxazin at 0.29 kg/ha, and oryzalin at 4.5 kg/ha—provided at least 85% control of all weed species at Carrington and Absaraka, ND, during 2002.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1146a-1146
Author(s):  
M.J. Bukovac ◽  
D.L. Reichard

Most growth regulators and crop protection chemicals are delivered to the plant as aqueous sprays. Spray droplet:plant surface interaction is central to establishing spray and, hence, dose retention by the plant. Further, the nature of chemical deposition from spray droplets plays an important role in determining the efficiency of the active ingredient (a.i.). Using scanning electron microscopy and dispersive x-ray analysis, we investigated chemical deposit formation of selected growth regulators (e.g. ethephon, 2,4, 5-TP, TIBA) on leaf surfaces differing in wettability and surface fine-structure. The a.i. frequently deposited in the form of an annulus on droplet drying, and the degree of spreading was related to surface tension of the spray solution, and wettability, fine-structure and morphology of the leaf surface. Marked differences were observed in spreading following impaction on veins vs. interveinal areas of leaves of Prunus and Pyrus sp. The epidermis over veins was more readily wetted leading to rapid lateral diffusion along veins. Surfactants (e.g. Tween 20, Regulaid) altered the deposition pattern, expanding the annulus and increasing spreading on the leaf surface.


Weed Science ◽  
1981 ◽  
Vol 29 (4) ◽  
pp. 474-480 ◽  
Author(s):  
Ronald L. Ritter ◽  
Harold D. Coble

Penetration, translocation, and metabolism of acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid} in soybean [Glycine max(L.) Merr. ‘Ransom’], common ragweed (Ambrosia artemisiifoliaL.), and common cocklebur (Xanthium pensylvanicumWallr.) were studied. Using liquid scintillation spectrometry and autoradiography, little movement of14C-acifluorfen from the leaf surfaces of the two weed species could be detected in 24 h. After 48 h, less14C was recovered from the leaf surface and more was found within the leaves of the two weed species. Autoradiographs of the weed showed limited acropetal movement of14C from leaves 24 and 48 h after treatment. For soybean, most of the14C still remained on the leaf surface after 48 h. Autoradiographs of soybean plants showed no movement from the treated leaflet. Studies using thin layer chromatography suggested that acifluorfen was metabolized within the plants. Rate of metabolism was inversely related to plant susceptibility (common ragweed and common cocklebur>soybean). The more rapid penetration and translocation, coupled with slower metabolism of acifluorfen by the weed species in comparison to soybean, may account for the difference in susceptibility of the weeds and soybean to acifluorfen.


2017 ◽  
Vol 8 ◽  
pp. 2345-2356 ◽  
Author(s):  
Oliver Hagedorn ◽  
Ingo Fleute-Schlachter ◽  
Hans Georg Mainx ◽  
Viktoria Zeisler-Diehl ◽  
Kerstin Koch

This study performed with soybean (Glycine max L.), one of the most important crops for human and animal nutrition, demonstrates that changes in the leaf surface structure can increase the adhesion of applied droplets, even on superhydrophobic leaves, to reduce undesirable soil contamination by roll-off of agrochemical formulations from the plant surfaces. The wettability and morphology of soybean (Glycine max L.) leaf surfaces before and after treatment with six different surfactants (Agnique® SBO10 and five variations of nonionic surfactants) have been investigated. The leaf surface structures show a hierarchical organization, built up by convex epidermal cells (microstructure) and superimposed epicuticular platelet-shaped wax crystals (micro- to nanostructure). Chemical analysis of the epicuticular wax showed that 1-triacontanol (C30H61OH) is the main wax component of the soybean leaf surfaces. A water contact angle (CA) of 162.4° (σ = 3.6°) and tilting angle (TA) of 20.9° (σ = 10.0°) were found. Adherence of pure water droplets on the superhydrophobic leaves is supported by the hydrophilic hairs on the leaves. Agnique® SBO10 and the nonionic surfactant XP ED 75 increased the droplet adhesion and caused an increase of the TA from 20.9° to 85° and 90°, respectively. Scanning electron microscopy showed that surfactants with a hydrophilic–lipophilic balance value below 10 caused a size reduction of the epicuticular wax structures and a change from Cassie–Baxter wetting to an intermediate wetting regime with an increase of droplet adhesion.


Weed Science ◽  
2006 ◽  
Vol 54 (4) ◽  
pp. 627-633 ◽  
Author(s):  
Debanjan Sanyal ◽  
Prasanta C. Bhowmik ◽  
Krishna N. Reddy

Laboratory studies were conducted to examine the leaf surface, epicuticular wax content, and spread area of primisulfuron spray droplet with and without surfactant on leaf surface of barnyardgrass and green foxtail. Adaxial and abaxial leaf surfaces were examined using scanning electron microscopy and leaf wax was extracted and quantified. The spread of 1-μl droplets of distilled water, primisulfuron solution (without surfactant), primisulfuron solution with a nonionic low foam wetter/spreader adjuvant (0.25% v/v), and with an organosilicone wetting agent (0.1% v/v) was determined on the adaxial leaf surfaces of each of the weed species. Stomata and trichomes were present on adaxial and abaxial leaf surfaces in both species. Green foxtail had more stomata per unit area on the adaxial as compared to the abaxial leaf surface. Barnyardgrass had more stomata on the abaxial than on the adaxial leaf surface. There was no significant variation in the number of trichomes per unit leaf area of green foxtail, and the number of prickles per unit area of leaf was significantly higher in adaxial than the abaxial leaf surface, in both young and old leaves. In barnyardgrass, there were more trichomes on abaxial than adaxial leaf surface. The mean value of the wax content per unit of leaf area in barnyardgrass and green foxtail was 35.9 μg cm−2and 19.1 μg cm−2, respectively. On both species primisulfuron with a nonionic surfactant had more spread area than that without a surfactant, and the spread was even greater with organosilicone wetting agent. The spread area of primisulfuron droplet was higher on the leaf surface of barnyardgrass than on green foxtail when surfactant was added.


Weed Science ◽  
1974 ◽  
Vol 22 (4) ◽  
pp. 394-401 ◽  
Author(s):  
F. D. Hess ◽  
D. E. Bayer ◽  
R. H. Falk

The distribution pattern of MCPA ([(4-chloro-o-tolyl)oxy] acetic acid) on leaf surfaces of three species was studied using the cathodoluminescence detection mode of a scanning electron microscope. On low-wax-content sugarbeet (Beta vulgarisL.) leaves MCPA concentrated in the depressions over the anticlinal cell walls when applied at high volumes (748 and 374 L/ha). At low volumes (23 L/ha), numerous small deposits of MCPA were randomly distributed over both anticlinal and periclinal walls. These distinct patterns were independent of herbicide concentration. Regardless of spray volumes, MCPA remaining on the waxy leaf surfaces of cabbage (Brassica oleraceaL.) coalesced into small thick deposits. Large spray drops from high application volumes shattered on impact with the stellate hairs of turkey mullein (Eremocarpus setigerusBenth.) resulting in some MCPA reaching the leaf surface. Spray drops from low application volumes did not shatter but lodged on the hairs with very little reaching the leaf surface.


2019 ◽  
Vol 14 (1) ◽  
pp. 123
Author(s):  
Paulo Henrique Siqueira Sabino ◽  
Gian Otavio Alves Da Silva ◽  
Adriano Bortolotti Da Silva ◽  
Geraldo Andrade Carvalho

The present study aimed to evaluate the effects of applying fungicides with different sources of copper and of the number of applications on the occurrence of <em>Leucoptera coffeella </em>(Guérin-Menéville &amp; Perrottet, 1842) (Lepidoptera: Lyonetiidae) and on the wax layer on leaves in a coffee plantation. Four applications of fungicides were carried out and the effects on the number of leaves mined by the insect and on the wax content on the leaf surface were evaluated. The copper-based fungicides increased the number of leaves mined by the leaf-miner and reduced the wax content on the coffee leaf surfaces in both periods studied.


Sign in / Sign up

Export Citation Format

Share Document