Modeling With Limited Data: The Influence of Crop Rotation and Management on Weed Communities and Crop Yield Loss

Weed Science ◽  
2009 ◽  
Vol 57 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Stephen R. Canner ◽  
L. J. Wiles ◽  
Robert H. Erskine ◽  
Gregory S. McMaster ◽  
Gale H. Dunn ◽  
...  

Theory and models of crop yield loss from weed competition have led to decision models to help growers choose cost-effective weed management. These models are available for multiple-species weed communities in a single season of several crops. Growers also rely on crop rotation for weed control, yet theory and models of weed population dynamics have not led to similar tools for planning of crop rotations for cost-effective weed management. Obstacles have been the complexity of modeling the dynamics of multiple populations of weed species compared to a single species and lack of data. We developed a method to use limited, readily observed data to simulate population dynamics and crop yield loss of multiple-species weed communities in response to crop rotation, tillage system, and specific weed management tactics. Our method is based on the general theory of density dependence of plant productivity and extensive use of rectangular hyperbolic equations for describing crop yield loss as a function of weed density. Only two density-independent parameters are required for each species to represent differences in seed bank mortality, emergence, and maximum seed production. One equation is used to model crop yield loss and density-dependent weed seed production as a function of crop and weed density, relative time of weed and crop emergence, and differences among species in competitive ability. The model has been parameterized for six crops and 15 weeds, and limited evaluation indicates predictions are accurate enough to highlight potential weed problems and solutions when comparing alternative crop rotations for a field. The model has been incorporated into a decision support tool for whole-farm management so growers in the Central Great Plains of the United States can compare alternative crop rotations and how their choice influences farm income, herbicide use, and control of weeds in their fields.

2021 ◽  
Vol 306 ◽  
pp. 127140
Author(s):  
Rubia Dominschek ◽  
Arthur Arrobas Martins Barroso ◽  
Claudete Reisdorfer Lang ◽  
Anibal de Moraes ◽  
Reuben Mark Sulc ◽  
...  

2006 ◽  
Vol 20 (2) ◽  
pp. 478-484 ◽  
Author(s):  
Shawn M. Hock ◽  
Stevan Z. Knezevic ◽  
Alex R. Martin ◽  
John L. Lindquist

Decision support systems (DSSs) have been developed to assist producers and consultants with weed management decisions. WeedSOFT is a DSS currently used in several states in the north-central region of the United States. Accurate estimates of crop yield loss due to weed interference are required for cost-effective weed management recommendations. WeedSOFT uses competitive indices (CIs) to predict crop yield loss under multiple weed species, weed densities, and relative times of weed emergence. Performance of several WeedSOFT versions to predict soybean yield loss from weed competition was evaluated using CI values in WeedSOFT version 9.0 compared to new CI values calculated from weed dry matter, weed volume, and soybean yield loss in two soybean row spacings (19 and 76 cm) and two relative weed emergence times (at soybean emergence and first trifoliate leaf stage). Overall, new CI values improved predictions of soybean yield loss by as high as 63%. It was especially true with using new CI values based on yield loss compared to those based on weed dry matter or weed volume. However, there were inconsistencies in predictions for most weed species, suggesting that additional modifications are needed to further improve soybean yield loss predictions.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


Weed Science ◽  
2009 ◽  
Vol 57 (4) ◽  
pp. 417-426 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly common and problematic weed in no-till soybean production in the eastern cornbelt due to the frequent occurrence of biotypes resistant to glyphosate. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual non-glyphosate herbicides, and preplant application timing on the population dynamics of glyphosate-resistant (GR) horseweed and crop yield. A field study was conducted from 2003 to 2007 in a no-till field located at a site that contained a moderate infestation of GR horseweed (approximately 1 plant m−2). The experiment was a split-plot design with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying in-field horseweed plant density, seedbank density, and crop yield. Horseweed densities were collected at the time of postemergence applications, 1 mo after postemergence (MAP) applications, and at the time of crop harvest or 4 MAP. Viable seedbank densities were also evaluated from soil samples collected in the fall following seed rain. Soybean–corn crop rotation reduced in-field and seedbank horseweed densities vs. continuous soybean in the third and fourth yr of this experiment. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season-long in-field horseweed densities and protecting crop yields since the growth habit of horseweed in this region is primarily as a summer annual. Management systems also influenced the GR and glyphosate-susceptible (GS) biotype population structure after 4 yr of management. The most dramatic shift was from the initial GR : GS ratio of 3 : 1 to a ratio of 1 : 6 after 4 yr of residual preplant herbicide use followed by non-glyphosate postemergence herbicides.


2021 ◽  
Vol 64 (2) ◽  
pp. 461-474
Author(s):  
Mohammad J. Anar ◽  
Zhulu Lin ◽  
Liwang Ma ◽  
Amitava Chatterjee

HighlightsFour crop growth modules in RZWQM2 were calibrated for four sugarbeet rotation sequences.Sugarbeet following wheat had a slightly higher yield (3% to 6.5%).Moldboard plow increased sugarbeet yield by 1% to 2%.The difference in N losses under different crop rotations and tillage operations was negligible.Abstract. Sugarbeet (Beta vulgaris) is considered to be one of the most viable alternatives to corn for biofuel production as it may be qualified as the feedstock for advanced biofuels (reducing greenhouse gas emission by 50%) under the Energy Independence and Security Act (EISA) of 2007. Because sugarbeet production is affected by crop rotation and tillage through optimal use of soil water and nutrients, simulation of these effects will help in making proper management decisions. In this study, the CSM-CERES-Beet, CSM-CERES-Maize, CROPSIM-Wheat, and CROPGRO-Soybean models included in the RZWQM2 were calibrated against experimental field data of crop yield, soil water, and soil nitrate from the North Dakota State University Carrington Research Extension Center from 2014 to 2016. The models performed reasonably well in simulating crop yield, soil water, and nitrate (rRMSE = 0.055 to 2.773, d = 0.541 to 0.997). Simulation results identified a non-significant effect of crop rotation on sugarbeet yield, although sugarbeets following wheat resulted in 3% to 6.5% higher yields compared to other crops. Net mineralization and N uptake rates were slightly higher when sugarbeets followed wheat compared to the other crops. Seasonal N and water mass balances also showed lower N and water stresses when sugarbeets followed wheat. The effects of tillage operations on sugarbeet yield were also non-significant. The difference in the N losses to runoff and drainage from the sugarbeet fields under different crop rotations and tillage operations was negligible. As sugarbeet production may be expanded into nontraditional planting areas in the Red River Valley due to potential demand for biofuel production, our findings will help to assess the associated environmental impacts and identify suitable crop rotations and management scenarios in the region. Keywords: Biofuel, Crop rotation, RZWQM2, Sugarbeet, Tillage.


1977 ◽  
Vol 2 (3) ◽  
pp. 189-198 ◽  
Author(s):  
P.S. Teng ◽  
M.J. Blackie ◽  
R.C. Close

Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 508-516 ◽  
Author(s):  
Vince M. Davis ◽  
Kevin D. Gibson ◽  
Thomas T. Bauman ◽  
Stephen C. Weller ◽  
William G. Johnson

Horseweed is an increasingly problematic weed in soybean because of the frequent occurrence of glyphosate-resistant (GR) biotypes. The objective of this study was to determine the influence of crop rotation, winter wheat cover crops (WWCC), residual nonglyphosate herbicides, and preplant herbicide application timing on the population dynamics of GR horseweed and crop yield. A field study was conducted at a site with a moderate infestation of GR horseweed (approximately 1 plant m−2) with crop rotation (soybean–corn or soybean–soybean) as main plots and management systems as subplots. Management systems were evaluated by quantifying horseweed plant density, seedbank density, and crop yield. Crop rotation did not influence in-field horseweed or seedbank densities at any data census timing. Preplant herbicides applied in the spring were more effective at reducing horseweed plant densities than when applied in the previous fall. Spring-applied, residual herbicide systems were the most effective at reducing season long horseweed densities and protecting crop yield because horseweed in this region behaves primarily as a summer annual weed. Horseweed seedbank densities declined rapidly in the soil by an average of 76% for all systems over the first 10 mo before new seed rain. Despite rapid decline in total seedbank density, seed for GR biotypes remained in the seedbank for at least 2 yr. Therefore, to reduce the presence of GR horseweed biotypes in a local no-till weed flora, integrated weed management (IWM) systems should be developed to reduce total horseweed populations based on the knowledge that seed for GR biotypes are as persistent in the seed bank as glyphosate-sensitive (GS) biotypes.


Sign in / Sign up

Export Citation Format

Share Document