Distribution of Glyphosate-Resistant Horseweed (Conyza canadensis) and Relationship to Cropping Systems in The Central Valley of California

Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Bradley D. Hanson ◽  
Anil Shrestha ◽  
Dale L. Shaner

Horseweed is an increasing problem in perennial crops and noncrop areas of the Central Valley of California. Similar to the situation in glyphosate-tolerant crops in other regions, glyphosate-based weed-management strategies in perennial crops and noncrop areas have resulted in selection of a glyphosate-resistant horseweed biotype in California. Research was conducted to determine the level of resistance to glyphosate in horseweed using an in vivo enzyme assay and to determine the distribution of the resistant horseweed biotype in central California. The resistant biotype was 4.8-fold more resistant to in vivo glyphosate exposure compared with the susceptible biotype, although enzyme function was inhibited in both biotypes at high glyphosate concentrations. An intermediate in vivo glyphosate dose was used to discriminate between glyphosate-resistant and glyphosate-susceptible individuals in a roadside survey conducted in 2006 to 2007. Overall, 62% of the individuals tested from the Central Valley were classified as resistant to glyphosate. Resistant individuals were found at most locations throughout the Central Valley, although the proportion of resistant individuals was slightly lower in the northern-most area. No correlation could be made between proportion of resistant or susceptible individuals and land use patterns likely because of long-distance seed dispersal or different selection pressure for resistant biotypes on field margins compared with that within fields. Horseweed with an economically significant level of resistance to glyphosate is already widely distributed in the Central Valley of California. Grower awareness of the problem and adoption of best management practices are needed to minimize the effects of horseweed in this highly productive and diverse agricultural region.

2020 ◽  
pp. 1-11
Author(s):  
Maxwel C. Oliveira ◽  
Anelise Lencina ◽  
André R. Ulguim ◽  
Rodrigo Werle

Abstract A stakeholder survey was conducted from April through June of 2018 to understand stakeholders’ perceptions and challenges about cropping systems and weed management in Brazil. The dominant crops managed by survey respondents were soybean (73%) and corn (66%). Approximately 75% of survey respondents have grown or managed annual cropping systems with two to three crops per year cultivated in succession. Eighteen percent of respondents manage only irrigated cropping systems, and over 60% of respondents adopt no-till as a standard practice. According to respondents, the top five troublesome weed species in Brazilian cropping systems are horseweed (asthmaweed, Canadian horseweed, and tall fleabane), sourgrass, morningglory, goosegrass, and dayflower (Asiatic dayflower and Benghal dayflower). Among the nine species documented to have evolved resistance to glyphosate in Brazil, horseweed and sourgrass were reported as the most concerning weeds. Other than glyphosate, 31% and 78% of respondents, respectively, manage weeds resistant to acetyl-CoA carboxylase (ACCase) inhibitors and/or acetolactate synthase (ALS) inhibitors. Besides herbicides, 45% of respondents use mechanical, and 75% use cultural (e.g., no-till, crop rotation/succession) weed control strategies. Sixty-one percent of survey respondents adopt cover crops to some extent to suppress weeds and improve soil chemical and physical properties. Nearly 60% of survey respondents intend to adopt the crops that are resistant to dicamba or 2,4-D when available. Results may help practitioners, academics, industry, and policy makers to better understand the bad and the good of current cropping systems and weed management practices adopted in Brazil, and to adjust research, education, technologies priorities, and needs moving forward.


Weed Science ◽  
1999 ◽  
Vol 47 (6) ◽  
pp. 729-735 ◽  
Author(s):  
Colleen Doucet ◽  
Susan E. Weaver ◽  
Allan S. Hamill ◽  
Jianhua Zhang

Crop rotation is thought to reduce weed density and maintain species diversity, thus preventing the domination of a few problem weeds. Because cropping sequence dictates other agricultural management practices, variations in weed populations between cropping systems may be the direct result of crop rotation, the result of different weed management practices associated with crop rotation, or both. Studies that fail to separate the effects of crop rotation from weed management may generate misleading results. A 10-yr crop rotation study was undertaken to study the dynamics of the standing weed vegetation inZea maysL.,Glycine maxL., andTriticum aestivumL. The present paper compared total weed density and diversity between monocultures and rotations under three levels of weed management. Weed management accounted for 37.9% of the variation in total weed density, whereas crop rotation accounted for only 5.5%. Weed density varied between monocultures and rotations in plots where herbicides were applied. The effectiveness of rotations in reducing weed density was dependent upon the crop. Margalef's species richness index (DMG), a measure of diversity, varied among weed management strategies, with 38.4% of the variance attributed to this factor. In the 10th year, when all plots were sown withZ. mays, few cumulative effects of crop rotation were apparent, with two exceptions. In weedy and herbicide-treated plots, weed density was higher on plots cropped withZ. maysthe previous year. Also, under these weed management treatments, including a cereal in the crop rotation reduced weed density. Crop rotation, when used in combination with herbicides, provides additional weed control and is therefore an effective tool in integrated weed management.


Weed Science ◽  
1980 ◽  
Vol 28 (4) ◽  
pp. 445-451 ◽  
Author(s):  
R. D. William ◽  
M. Y. Chiang

In tropical and subtemperate regions of the world, farmers plant vegetables and other crops in a vast array of cropping systems that often involve more than one crop being grown on the same parcel of land in a year. Weed communities within each cropping system shift depending on physical and climatic factors and the specific crop and weed management practices employed. Modern weed management strategies involve combinations of crop production practices and specific weed control technologies intended to reduce weed competition, thereby shifting the competitive balance in favor of the crop. Weed research and, training efforts, therefore, must focus on the entire cropping system with emphasis on year-round and multi-year management of weed communities.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 91-99
Author(s):  
R. A. Wagner ◽  
M. G. Heyl

As part of the Sarasota Bay National Estuary Program (NEP) evaluation of environmental problems, modeling tools were used to estimate pollution loadings from diverse sources, including surface runoff, baseflow, wastewater treatment plant discbarges, septic tanks, and direct deposition of rainfall on the bay surface. After assessing the relative impacts of the pollution sources, alternative management strategies were identified and analyzed. These strategies focused primarily on future development, and included structural and nonstructural best management practices (BMPs), as well as a regional wastewater treatment plan. Loading reductions, along with planning-level cost data and estimates of feasibility and other potential benefits, were used to identify the most promising alternatives.


Weed Science ◽  
2019 ◽  
Vol 67 (1) ◽  
pp. 126-135 ◽  
Author(s):  
Nicholas E. Korres ◽  
Jason K. Norsworthy ◽  
Andy Mauromoustakos

AbstractInformation about weed biology and weed population dynamics is critical for the development of efficient weed management programs. A field experiment was conducted in Fayetteville, AR, during 2014 and 2015 to examine the effects of Palmer amaranth (Amaranthus palmeriS. Watson) establishment time in relation to soybean [Glycine max(L.) Merr.] emergence and the effects ofA. palmeridistance from the soybean row on the weed’s height, biomass, seed production, and flowering time and on soybean yield. The establishment time factor, in weeks after crop emergence (WAE), was composed of six treatment levels (0, 1, 2, 4, 6, and 8 WAE), whereas the distance from the crop consisted of three treatment levels (0, 24, and 48 cm). Differences inA. palmeribiomass and seed production averaged across distance from the crop were found at 0 and 1 WAE in both years. Establishment time had a significant effect onA. palmeriseed production through greater biomass production and height increases at earlier dates.Amaranthus palmerithat was established with the crop (0 WAE) overtopped soybean at about 7 and 10 WAE in 2014 and 2015, respectively. Distance from the crop affectedA. palmeriheight, biomass, and seed production. The greater the distance from the crop, the higherA. palmeriheight, biomass, and seed production at 0 and 1 WAE compared with other dates (i.e., 2, 4, 6, and 8 WAE).Amaranthus palmeriestablishment time had a significant impact on soybean yield, but distance from the crop did not. The earlierA. palmeriinterfered with soybean (0 and 1 WAE), the greater the crop yield reduction; after that period no significant yield reductions were recorded compared with the rest of the weed establishment times. Knowledge ofA. palmeriresponse, especially at early stages of its life cycle, is important for designing efficient weed management strategies and cropping systems that can enhance crop competitiveness. Control ofA. palmeriwithin the first week after crop emergence or reduced distance between crop and weed are important factors for an effective implementation of weed management measures againstA. palmeriand reduced soybean yield losses due to weed interference.


Weed Science ◽  
1995 ◽  
Vol 43 (2) ◽  
pp. 269-275 ◽  
Author(s):  
John L. Lindquist ◽  
Bruce D. Maxwell ◽  
Douglas D. Buhler ◽  
Jeffrey L. Gunsolus

A simulation model was developed to predict the population dynamics and economics of velvetleaf control in a corn-soybean rotation. Data compiled from the literature were used to parameterize the model for two situations, one in which velvetleaf was infected by aVerticilliumspp. wilt and one without infection.Verticilliumwas assumed to have no effect on corn or soybean yield. In the absence of control, simulated seedbank densities of aVerticillium-infected velvetleaf population were 5 to 50 times lower than for an uninfected velvetleaf population. The model was used to evaluate a threshold weed management strategy under the assumption that velvetleaf was the only weed and bentazon the only herbicide available for its control. In the absence ofVerticillium, an economic optimum threshold of 2.5 seedlings 100 m−2afforded the highest economic returns after 20 yr of simulation. Simulations in which velvetleaf was infected in 8 out of 20 randomly assigned years indicated a 6% increase in annualized net return and an 11 % reduction in the number of years that control was necessary. Sensitivity analysis indicated the parameter estimates having the greatest impact on economic optimum threshold were seedling emergence and survival, maximum seed production, and herbicide efficacy. Under an economic optimum threshold of 2.5 seedlings 100 m−2, management practices that manipulate the most sensitive demographic processes increased annualized net return by up to 13% and reduced long-term herbicide use by up to 26%. Results demonstrate that combining an economic optimum threshold with alternative weed management strategies may increase economic return and reduce herbicide use.


Weed Science ◽  
2018 ◽  
Vol 66 (6) ◽  
pp. 729-737 ◽  
Author(s):  
Thomas R. Butts ◽  
Bruno C. Vieira ◽  
Débora O. Latorre ◽  
Rodrigo Werle ◽  
Greg R. Kruger

AbstractWaterhemp [Amaranthus tuberculatus(Moq.) J. D. Sauer] is a troublesome weed occurring in cropping systems throughout the U.S. Midwest with an ability to rapidly evolve herbicide resistance that could be associated with competitive disadvantages. Little research has investigated the competitiveness of differentA. tuberculatuspopulations under similar environmental conditions. The objectives of this study were to evaluate: (1) the interspecific competitiveness of three herbicide-resistantA. tuberculatuspopulations (2,4-D and atrazine resistant [2A-R], glyphosate and protoporphyrinogen oxidase [PPO]-inhibitor resistant [GP-R], and 2,4-D, atrazine, glyphosate, and PPO-inhibitor susceptible [2AGP-S]) with soybean [Glycine max(L.) Merr.]; and (2) the density-dependent response of eachA. tuberculatuspopulation within a constant soybean population in a greenhouse environment.Amaranthus tuberculatuscompetitiveness with soybean was evaluated across five target weed densities of 0, 2, 4, 8, and 16 plants pot−1(equivalent to 0, 20, 40, 80, and 160 plants m−2) with 3 soybean plants pot−1(equivalent to 300,000 plants ha−1). At the R1 soybean harvest time, no difference in soybean biomass was observed acrossA. tuberculatuspopulations. AtA. tuberculatusdensities <8 plants pot−1, the 2AGP-S population had the greatest biomass and stem diameter per plant. At the R7 harvest time, the 2AGP-S population caused the greatest loss in soybean biomass and number of pods compared with the other populations at densities of <16 plants pot−1. The 2AGP-S population had greater early-season biomass accumulation and stem diameter compared with the otherA. tuberculatuspopulations, which resulted in greater late-season reduction in soybean biomass and number of pods. This research indicates there may be evidence of interspecific competitive fitness cost associated with the evolution of 2,4-D, atrazine, glyphosate, and PPO-inhibitor resistance inA. tuberculatus. Focus should be placed on effectively using cultural weed management practices to enhance crop competitiveness, especially early in the season, to increase suppression of herbicide-resistantA. tuberculatus.


2011 ◽  
Vol 25 (1) ◽  
pp. 159-164 ◽  
Author(s):  
Hugh J. Beckie ◽  
K. Neil Harker ◽  
Linda M. Hall ◽  
Frederick A. Holm ◽  
Robert H. Gulden

With increasing incidence of glyphosate-resistant weeds worldwide, greater farmer awareness of the importance of glyphosate stewardship and proactive glyphosate-resistance management is needed. A Web-based decision-support tool (http://www.weedtool.com) comprising 10 questions has been developed primarily for farmers in western Canada to assess the relative risk of selection for glyphosate-resistant weeds on a field-by-field basis. We describe the rationale for the questions and how a response to a particular question influences the risk rating. Practices with the greatest risk weighting in western Canadian cropping systems are lack of crop-rotation diversity (growing mainly oilseeds) and a high frequency of glyphosate-resistant crops in the rotation. Three case scenarios are outlined—low, moderate, and high risk of glyphosate-resistance evolution. Based on the overall risk rating, three best-management practices are recommended to reduce the risk of glyphosate resistance in weeds.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247137
Author(s):  
Muhammad Shahzad ◽  
Khawar Jabran ◽  
Mubshar Hussain ◽  
Muhammad Aown Sammar Raza ◽  
Leonard Wijaya ◽  
...  

The world population will rise in future, which would demand more wheat production to fulfil dietary needs of wheat-dependent population of the world. Food security in wheat-dependent regions will greatly rely on wheat productivity. Weed infestation is a major constraint reducing wheat productivity globally. Nonetheless, cropping systems and weed management strategies strongly influence weed infestation in modern agriculture. Herbicides are the key weed management tool in conventional agriculture. However, frequent use of herbicides have resulted in the evolution of herbicide-resistance weeds, which made weed management a challenging task. Sustainable and eco-friendly weed management strategies shift weed-crop competition in the favour of crop plants. Limited studies have evaluated the interactive effect of cropping systems and weed management strategies on weed flora of wheat-based cropping systems (WBCSs). This two-year study evaluated the impact of different weed management strategies (WMSs) on weed flora of WBCSs, i.e., fallow-wheat (FW), rice-wheat (RW), cotton-wheat (CW), mungbean-wheat (MW) and sorghum-wheat (SW). The WMSs included in the study were, false seedbed, allelopathic water extracts and herbicide application, while weed-free and weedy-check were maintained as control treatments. Data relating to diversity and density of individual and total broadleaved and narrow-leaved weeds were recorded. The WBCSs, WMSs and their interaction significantly altered diversity and density of individual, total, broadleaved and narrow-leaved weeds. Weed-free and weedy-check treatments recorded the lowest and the highest values of diversity and density of individual, total, broadleaved and narrow-leaved weeds. Herbicide application effectively reduced density and diversity of weeds. Allelopathic water extracts and false seedbed proved less effective than herbicides. On the other hand, SW cropping system not only reduced weed density but also limited the weed flora. It is concluded that false seedbed and SW cropping system can be efficiently used to manage weeds in WBCSs. However, long-term studies are needed to infer the impact of SW cropping system and false seedbed on soil properties, soil microbes and productivity of wheat crop.


Sign in / Sign up

Export Citation Format

Share Document