Seed Germination Ecology of Doveweed (Murdannia nudiflora)and Its Implication for Management in Dry-Seeded Rice

Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 491-501 ◽  
Author(s):  
Sharif Ahmed ◽  
Jhoana L. Opeña ◽  
Bhagirath S. Chauhan

This study was conducted in the laboratory and screenhouse to determine the effects of temperature, light, osmotic stress, salt stress, burial depth, use of crop residues as mulch, depth of flooding, and use of POST herbicides on the emergence, survival, and growth of doveweed. In the light/dark regime, germination was higher at alternating day/night temperatures of 35/25 C (95%) than at 30/20 C (72%), and no germination occurred at 25/15 C. Light strongly influenced germination (95%) and dark completely inhibited germination. No germination occurred at an osmotic potential of −0.8 MPa and a salt concentration of 150 mM and above. The highest germination (91%) was observed from the seeds sown on the soil surface and emergence decreased by 78, 86, and 92% when burial depths were increased to 0.5, 1, and 2 cm, respectively. No seedlings emerged from seeds buried at depths of more than 2 cm. The use of rice residues as mulch significantly reduced the emergence and growth of doveweed seedlings. The amount of residue required to suppress 50% of the maximum biomass was 2.5 t ha−1. Flooding had a more pronounced effect on seedling biomass than seedling emergence. Biomass was reduced by 78, 92, and 96% when flooding depths increased from 0 to 2, 4, and 6 cm, respectively, for the seeds placed on the soil surface, whereas for the seeds buried at 0.5 cm, these values were 78, 100, and 100%. Bentazon (100 g ha−1) and bispyribac-sodium (30 g ha−1) provided 100% control of doveweed when applied at the three-leaf stage. Doveweed control was less than 31% with glyphosate rates up to 2,000 g ha−1. The application of 2,4-D (500 g ha−1) provided 100% control of doveweed even when applied at the seven-leaf stage. The information from this study could help in developing more sustainable and effective integrated weed management strategies for the control of this weed and weeds with similar response in dry-seeded rice systems.

Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Wei Tang ◽  
Jie Chen ◽  
Jianping Zhang ◽  
Yongliang Lu

Triquetrous murdannia is an annual weed commonly found in rice fields in China. Laboratory and screenhouse experiments were carried out to determine the effect of light, temperature, osmotic and salt stress, seed burial depth, amount of rice residue, and depth of flooding on seed germination and seedling emergence of triquetrous murdannia and to evaluate the response of this weed to commonly available POST herbicides in China. Germination was greater than 93% under a wide day/night temperature range of 20/10 to 30/20 C in the light/dark regime. The time to onset of germination decreased as temperature increased. Germination was slightly stimulated when seeds were placed in light/dark conditions compared with seeds placed in the dark. The osmotic potential and NaCl concentration required for 50% inhibition of maximum germination were −0.5 MPa and 122 mM, respectively. The highest germination (68%) was observed from seeds sown on the soil surface, but decreased with increasing burial depth. Only 7% of seedlings emerged from a depth of 4 cm, and no seedlings emerged from seeds buried deeper than 6 cm. Seedling emergence decreased from 93 to 35% with increasing quantity of rice residue (1 to 6 103kg ha−1) applied on the soil surface. Seedling emergence was reduced by 40, 48, 64, and 70% at flooding depths of 1, 2, 4, and 6 cm, respectively, for the seeds sown on the soil surface. Fluroxypyr and MCPA herbicides provided 100% control of triquetrous murdannia at the 2- to 6-leaf stages; however, to achieve 100% control with bispyribac-sodium, MCPA+bentazone or MCPA+fluroxypyr, herbicides had to be applied by the 4-leaf stage. The results of this study could help in developing more sustainable and effective integrated weed management strategies for the control of triquetrous murdannia in rice fields in China.


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 512-516 ◽  
Author(s):  
Bhagirath Singh Chauhan

Crowfootgrass, a C4species, is one of the principal weeds of dry-seeded rice in Asia. Weed management decisions for this species can be derived from knowledge of its seed germination biology. Experiments were conducted in the laboratory and screenhouse to determine the effects of light, alternating day/night temperatures, water stress, seed burial depth, and rice residue on seed germination and seedling emergence of crowfootgrass and to evaluate the response of this weed to commonly available selective POST herbicides in the Philippines. Light stimulated seed germination, but it was not an absolute requirement for germination. Germination in the light/dark regime was greater at alternating day/night temperatures of 25/15 C (92%) than at 30/20 (70%) or 35/25 C (44%). The osmotic potential required for 50% inhibition of maximum germination was −0.23 MPa, although some seeds germinated at −0.6 MPa. Seedling emergence was greatest for the seeds placed on the soil surface (64%), and emergence declined with increased burial depth in soil. No seedlings emerged from a burial depth of 6 cm or greater. Seedling emergence of crowfootgrass was reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 Mg ha−1. Fenoxaprop-p-ethyl + ethoxysulfuron at 45 g ai ha−1provided excellent control of crowfootgrass when applied at the four- (99%) and six-leaf (86%) stage. The information gained from this study could contribute to developing components of integrated weed management strategies for crowfootgrass. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence, use of crop residue as mulch, and early application of an effective POST herbicide could serve as important tools for managing crowfootgrass.


Weed Science ◽  
2012 ◽  
Vol 60 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Bhagirath Singh Chauhan ◽  
Seth Bernard Abugho

Experiments were conducted in the laboratory and screenhouse to determine the effects of scarification; alternating day/night temperatures; light, salt, and water stress; seed burial depth; and rice residue on seed germination and seedling emergence of threelobe morningglory, and to evaluate the response of this weed to commonly available POST herbicides in the Philippines. Germination was stimulated by seed scarification, suggesting that inhibition of germination in this species is mainly due to the hard seed coat. Germination of the scarified seeds was not influenced by the tested temperatures (alternating day/night temperatures of 25/15, 30/20, and 35/25 C) and light. The concentrations of sodium chloride, ranging from 0 to 250 mM, did not influence germination of the scarified seeds of threelobe morningglory. The osmotic potential required for 50% inhibition of maximum germination was −0.35 MPa, although some seeds germinated at −0.6 MPa. Seedling emergence was greatest for the seeds placed on the soil surface (96%), and emergence declined with increased burial depth in soil. The burial depth required for 50% inhibition of maximum emergence was 2.8 cm. No seedlings emerged from a burial depth of 6 cm or greater. Residues of up to 6 Mg ha−1on the soil surface did not influence seedling emergence of threelobe morningglory. The herbicide 2,4-D at 400 g ai ha−1provided excellent control of threelobe morningglory when applied at the four-leaf (100%) and six-leaf (97%) stages. However, at the eight-leaf stage, percent control was reduced to 67% and herbicide rate had to be increased twofold to achieve 95% control. The information gained from this study could contribute to developing components of integrated weed management strategies for threelobe morningglory. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence and early application of an effective POST herbicide could serve as important tools for managing threelobe morningglory.


Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 722-728 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Southern and India crabgrass are important grass weeds of rice in many tropical countries. Environmental factors influenced seed germination and seedling emergence of these weeds. Seeds of both species germinated at a range of alternating temperatures (25/15, 30/20, and 35/25 C day/night), though the germination of southern crabgrass was reduced at the lowest alternating temperatures (25/15 C). Light stimulated germination of both species; however, a small proportion of southern crabgrass seeds germinated in the dark. Germination of India crabgrass was influenced to a greater degree by increasing salt and water stresses than was southern crabgrass. Seeds of both species germinated over a wide range of pH between 5 and 10. Seedling emergence of both species (98% for southern crabgrass and 94% for India crabgrass) was greatest for seeds placed on the soil surface. Seed burial depth of 2 cm completely inhibited emergence of India crabgrass, whereas for southern crabgrass, this depth was 8 cm. Knowledge gained from this study is expected to contribute to developing components of integrated weed management strategies for these species.


Weed Science ◽  
2011 ◽  
Vol 59 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Grace E-K. Bolfrey-Arku ◽  
Bhagirath S. Chauhan ◽  
David E. Johnson

Itchgrass is a weed of many crops throughout the tropics and one of the most important grass weeds of rainfed rice. Experiments were conducted in the laboratory and screenhouse to determine the effects of light, alternating day/night temperatures, high temperature pretreatment, water stress, seed burial depth, and rice residue on seed germination and seedling emergence of itchgrass in the Philippines. Two populations were evaluated and the results were consistent for both populations. Germination in the light/dark regime was greater at alternating day/night temperatures of 25/15 C than at 35/25, 30/20, or 20/10 C. Light was not a requirement for germination, but a light/dark regime increased germination by 96%, across temperature and population. A 5-min high temperature pretreatment for 50% inhibition of maximum itchgrass germination ranged from 145 to 151 C with no germination when seeds were exposed to ≥ 180 C. The osmotic potential required for 50% inhibition of maximum germination was −0.6 MPa for itchgrass, although some seeds germinated at −0.8 MPa. Seedling emergence was greatest for seeds placed on the soil surface, and emergence declined with increasing soil burial depth; no seedlings emerged from seeds buried at 10 cm. The addition of rice residue to soil surface in pots at rates equivalent to 4 to 6 Mg ha−1reduced itchgrass seedling emergence. Since seedling emergence was greatest at shallow depths and germination was stimulated by light, itchgrass may become a problem in systems where soil is cultivated at shallow depths. Knowledge gained in this study could contribute to developing components of integrated weed management strategies for itchgrass.


Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 657-662 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Marcos J. Oliveira

Laboratory and greenhouse experiments were conducted to determine the effect of light, temperature, moisture stress, solution pH, and burial depth on coffee senna germination and emergence. Seeds germinated equally with or without light, and pretreatment with red or far-red light did not affect germination. Optimum temperature for germination was 25 C, and a high germination percentage (> 70%) occurred from 12.5 to 30 C. The low temperature threshold for germination was between 10 and 12.5 C, whereas the upper threshold was near 45 C. Coffee senna germination in response to moisture stress and solution pH differed at 15 and 30 C. At −0.4 MPa, no germination occurred at 15 C, whereas 15% germination occurred at 30 C. Optimum germination was at pH 6, but further increases in pH had a more negative effect on germination at 15 C than at 30 C. Coffee senna germination ranged from 9 to 12% at pH 3, but was 0% at pH 10, which indicates that coffee senna germination was more tolerant of acidic than basic solutions. Depth-mediated emergence inhibition was sigmoidal, with greatest emergence on the soil surface. Emergence from 2- to 10-cm depths reached 95% of the total emergence 1 to 3 d earlier in a sandy loam than in a sand soil. Mean emergence depth was 1.7 cm in the sand and 2.4 cm in the sandy loam soil. Knowledge gained from this research will be instrumental in developing a better understanding of the requirements for coffee senna germination and emergence, allowing further development and improvement of integrated weed management strategies specific to this troublesome weed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bhagirath Singh Chauhan ◽  
Hafiz Haider Ali ◽  
Singarayer Florentine

Abstract It is now widely recognized that Bidens pilosa has become a problematic broadleaf weed in many ecosystems across the world and, particularly in the light of recent climate change conditions, closer management strategies are required to curtail its impact on agricultural cropping. In this investigation, experiments were conducted to evaluate the effect of environmental factors on the germination and emergence of B. pilosa, and also on the response of this weed to commonly available post-emergence herbicides in Australia. The environmental factors of particular interest to this current work were the effect of light and temperature, salinity, burial depth and moisture on B. pilosa since these are key management issues in Australian agriculture. In addition, the effects of a number of commonly used herbicides were examined, because of concerns regarding emerging herbicide resistance. In the tested light/dark regimes, germination was found to be higher at fluctuating day/night temperatures of 25/15 °C and 30/20 °C (92–93%) than at 35/25 °C (79%), whilst across the different temperature ranges, germination was higher in the light/dark regime (79–93%) than in complete darkness (22–38%). The standard five-minute temperature pretreatment required for 50% inhibition of maximum germination was found to be 160 °C, and it was further shown that no seeds germinated at temperatures higher than 240 °C. With regard to salinity, some B. pilosa seeds germinated (3%) in 200 mM sodium chloride (NaCl) but all failed to germinate at 250 mM NaCl. Germination declined from 89% to 2% as the external osmotic potential decreased from 0 to −0.6 MPa, and germination ceased at −0.8 MPa. Seeding emergence of B. pilosa was maximum (71%) for seeds placed on the soil surface and it was found that no seedlings emerged from a depth of 8 cm or greater. A depth of 3.75 cm was required to inhibit the seeds to 50% of the maximum emergence. In this study, application of glufosinate, glyphosate and paraquat provided commercially acceptable control levels (generally accepted as >90%) when applied at the four-leaf stage of B. pilosa. However, none of the herbicide treatments involved in this study provided this level of control when applied at the six-leaf stage. In summary, B. pilosa germination has been clearly shown to be stimulated by light and thus its emergence was greatest from the soil surface. This suggests that infestation from this weed will remain as a problem in no-till conservation agriculture systems, the use of which is increasing now throughout the world. It is intended that information generated from this study be used to develop more effective integrated management programs for B. pilosa and similar weeds in commercial agricultural environments which are tending toward conservation approaches.


Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 699-706 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Goosegrass is considered one of the most important grassy weeds of rice, particularly in rain-fed environments. Experiments were conducted in laboratory, screenhouse, and field to study the germination ecology of goosegrass seeds. In the laboratory, germination was greater at higher alternating temperatures (30/20 and 35/25 C) than at the lowest alternating temperatures (25/15 C). An after-ripening period of at least 3 mo was required to improve the germination of goosegrass. Germination was tolerant of salt stress but sensitive to a high degree of water stress. A pH range of 5 to 10 did not influence seed germination (92 to 95%). In the screenhouse study, seedling emergence of goosegrass was greatest (82%) for seeds placed on the soil surface, but decreased exponentially after that, no seedlings emerged at a burial depth of 8 cm. Seedling emergence and seedling dry matter declined markedly with the addition of crop residue to the soil surface at rates equivalent to 4 to 6 ton (t) ha−1. In the field, seedling emergence of goosegrass was greater under zero-till (ZT; 16 to 18%) than under minimum tillage (MINT; 8 to 11%). Because seedling emergence was greater from surface-sown seeds and emergence was favored by ZT, this species is likely to become a problematic weed in ZT systems. The information gained from this study could be used in developing effective weed management strategies.


Weed Science ◽  
2014 ◽  
Vol 62 (4) ◽  
pp. 563-570 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Ma Jenina De Leon

Experiments were conducted in laboratory and screenhouse to determine the effects of light, temperature, salt and water stress, seed burial depth, and amount of rice residue on seed germination and seedling emergence of wild bushbean and to evaluate the response of that weed to commonly available POST herbicides in the Philippines. Germination (81 to 85%) was not influenced by light; however, it was higher at 30/20 C (88%) than at 25/15 C (82%) and 35/25 C (80%) day/night temperatures. The sodium chloride and osmotic potential required for 50% inhibition of maximum germination were 149 mM and −0.28 MPa, respectively. Seedling emergence (81%) was similar for seeds placed on the soil surface and for seeds buried up to 4 cm deep. No seedlings emerged from a burial depth of 8 cm. Rice residue applied on the soil surface up to 8 t ha−1did not affect seedling emergence (72 to 80%) of wild bushbean. The herbicide bentazon provided 100% control of wild bushbean when applied at the three- to five-leaf stages. However, to achieve 100% control by 2,4-D and metsulfuron-methyl + chlorimuron-ethyl, herbicides had to be applied at the three-leaf stage. The information gained from this study can help in developing components of integrated weed management programs for wild bushbean. A deep-tillage operation to bury weed seeds below their maximum depth of emergence and early application of an effective POST herbicide can help in managing this weed in rice fields.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 671
Author(s):  
Jane Kelly ◽  
Allison Chambers ◽  
Paul Weston ◽  
William Brown ◽  
Wayne Robinson ◽  
...  

Barley grass (Hordeum murinum subsp. glaucum.) is an annual weed associated with grain revenue loss and sheep carcass damage in southern Australia. Increasing herbicide resistance led to a recent investigation into effective integrated weed management strategies for barley grass in southern Australia. Field studies in Wagga Wagga, New South Wales (NSW) during 2016 and 2017 examined the effect of post-emergent herbicide applications and strategic defoliation by mowing on barley grass survival and seed production in a mixed legume pasture. Statistically significant differences between herbicide-only treatments in both years showed propaquizafop to be more than 98% effective in reducing barley grass survival and seed production. Paraquat was not effective in controlling barley grass (58% efficacy), but led to a 36% and 63.5% decrease in clover and other weed biomass, respectively, after 12 months and increased lucerne biomass by over three-fold after 24 months. A single repeated mowing treatment resulted in a 46% decline in barley grass seedling emergence after 12 months and, when integrated with herbicide applications, reduced other weed biomass after 24 months by 95%. Resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides observed in local barley grass populations led to additional and more focused investigation comparing the efficacy of other pre- and post-emergent herbicides for barley grass management in legume pastures. Haloxyfop-R + simazine or paraquat, applied at early tillering stage, were most efficacious in reducing barley grass survival and fecundity. Impact of defoliation timing and frequency on barley grass seedlings was also evaluated at various population densities, highlighting the efficacy of repeated post-inflorescence defoliations in reducing plant survival and seed production. Results highlight the importance of optimal environmental conditions and application timing in achieving efficacious control of barley grass and improving pasture growth and biomass accumulation.


Sign in / Sign up

Export Citation Format

Share Document