Germination Ecology of Goosegrass (Eleusine indica): An Important Grass Weed of Rainfed Rice

Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 699-706 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Goosegrass is considered one of the most important grassy weeds of rice, particularly in rain-fed environments. Experiments were conducted in laboratory, screenhouse, and field to study the germination ecology of goosegrass seeds. In the laboratory, germination was greater at higher alternating temperatures (30/20 and 35/25 C) than at the lowest alternating temperatures (25/15 C). An after-ripening period of at least 3 mo was required to improve the germination of goosegrass. Germination was tolerant of salt stress but sensitive to a high degree of water stress. A pH range of 5 to 10 did not influence seed germination (92 to 95%). In the screenhouse study, seedling emergence of goosegrass was greatest (82%) for seeds placed on the soil surface, but decreased exponentially after that, no seedlings emerged at a burial depth of 8 cm. Seedling emergence and seedling dry matter declined markedly with the addition of crop residue to the soil surface at rates equivalent to 4 to 6 ton (t) ha−1. In the field, seedling emergence of goosegrass was greater under zero-till (ZT; 16 to 18%) than under minimum tillage (MINT; 8 to 11%). Because seedling emergence was greater from surface-sown seeds and emergence was favored by ZT, this species is likely to become a problematic weed in ZT systems. The information gained from this study could be used in developing effective weed management strategies.

Weed Science ◽  
2016 ◽  
Vol 65 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Wei Tang ◽  
Jie Chen ◽  
Jianping Zhang ◽  
Yongliang Lu

Triquetrous murdannia is an annual weed commonly found in rice fields in China. Laboratory and screenhouse experiments were carried out to determine the effect of light, temperature, osmotic and salt stress, seed burial depth, amount of rice residue, and depth of flooding on seed germination and seedling emergence of triquetrous murdannia and to evaluate the response of this weed to commonly available POST herbicides in China. Germination was greater than 93% under a wide day/night temperature range of 20/10 to 30/20 C in the light/dark regime. The time to onset of germination decreased as temperature increased. Germination was slightly stimulated when seeds were placed in light/dark conditions compared with seeds placed in the dark. The osmotic potential and NaCl concentration required for 50% inhibition of maximum germination were −0.5 MPa and 122 mM, respectively. The highest germination (68%) was observed from seeds sown on the soil surface, but decreased with increasing burial depth. Only 7% of seedlings emerged from a depth of 4 cm, and no seedlings emerged from seeds buried deeper than 6 cm. Seedling emergence decreased from 93 to 35% with increasing quantity of rice residue (1 to 6 103kg ha−1) applied on the soil surface. Seedling emergence was reduced by 40, 48, 64, and 70% at flooding depths of 1, 2, 4, and 6 cm, respectively, for the seeds sown on the soil surface. Fluroxypyr and MCPA herbicides provided 100% control of triquetrous murdannia at the 2- to 6-leaf stages; however, to achieve 100% control with bispyribac-sodium, MCPA+bentazone or MCPA+fluroxypyr, herbicides had to be applied by the 4-leaf stage. The results of this study could help in developing more sustainable and effective integrated weed management strategies for the control of triquetrous murdannia in rice fields in China.


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 491-501 ◽  
Author(s):  
Sharif Ahmed ◽  
Jhoana L. Opeña ◽  
Bhagirath S. Chauhan

This study was conducted in the laboratory and screenhouse to determine the effects of temperature, light, osmotic stress, salt stress, burial depth, use of crop residues as mulch, depth of flooding, and use of POST herbicides on the emergence, survival, and growth of doveweed. In the light/dark regime, germination was higher at alternating day/night temperatures of 35/25 C (95%) than at 30/20 C (72%), and no germination occurred at 25/15 C. Light strongly influenced germination (95%) and dark completely inhibited germination. No germination occurred at an osmotic potential of −0.8 MPa and a salt concentration of 150 mM and above. The highest germination (91%) was observed from the seeds sown on the soil surface and emergence decreased by 78, 86, and 92% when burial depths were increased to 0.5, 1, and 2 cm, respectively. No seedlings emerged from seeds buried at depths of more than 2 cm. The use of rice residues as mulch significantly reduced the emergence and growth of doveweed seedlings. The amount of residue required to suppress 50% of the maximum biomass was 2.5 t ha−1. Flooding had a more pronounced effect on seedling biomass than seedling emergence. Biomass was reduced by 78, 92, and 96% when flooding depths increased from 0 to 2, 4, and 6 cm, respectively, for the seeds placed on the soil surface, whereas for the seeds buried at 0.5 cm, these values were 78, 100, and 100%. Bentazon (100 g ha−1) and bispyribac-sodium (30 g ha−1) provided 100% control of doveweed when applied at the three-leaf stage. Doveweed control was less than 31% with glyphosate rates up to 2,000 g ha−1. The application of 2,4-D (500 g ha−1) provided 100% control of doveweed even when applied at the seven-leaf stage. The information from this study could help in developing more sustainable and effective integrated weed management strategies for the control of this weed and weeds with similar response in dry-seeded rice systems.


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 512-516 ◽  
Author(s):  
Bhagirath Singh Chauhan

Crowfootgrass, a C4species, is one of the principal weeds of dry-seeded rice in Asia. Weed management decisions for this species can be derived from knowledge of its seed germination biology. Experiments were conducted in the laboratory and screenhouse to determine the effects of light, alternating day/night temperatures, water stress, seed burial depth, and rice residue on seed germination and seedling emergence of crowfootgrass and to evaluate the response of this weed to commonly available selective POST herbicides in the Philippines. Light stimulated seed germination, but it was not an absolute requirement for germination. Germination in the light/dark regime was greater at alternating day/night temperatures of 25/15 C (92%) than at 30/20 (70%) or 35/25 C (44%). The osmotic potential required for 50% inhibition of maximum germination was −0.23 MPa, although some seeds germinated at −0.6 MPa. Seedling emergence was greatest for the seeds placed on the soil surface (64%), and emergence declined with increased burial depth in soil. No seedlings emerged from a burial depth of 6 cm or greater. Seedling emergence of crowfootgrass was reduced by the addition of rice residue to the soil surface at rates equivalent to 4 to 6 Mg ha−1. Fenoxaprop-p-ethyl + ethoxysulfuron at 45 g ai ha−1provided excellent control of crowfootgrass when applied at the four- (99%) and six-leaf (86%) stage. The information gained from this study could contribute to developing components of integrated weed management strategies for crowfootgrass. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence, use of crop residue as mulch, and early application of an effective POST herbicide could serve as important tools for managing crowfootgrass.


Weed Science ◽  
2012 ◽  
Vol 60 (2) ◽  
pp. 199-204 ◽  
Author(s):  
Bhagirath Singh Chauhan ◽  
Seth Bernard Abugho

Experiments were conducted in the laboratory and screenhouse to determine the effects of scarification; alternating day/night temperatures; light, salt, and water stress; seed burial depth; and rice residue on seed germination and seedling emergence of threelobe morningglory, and to evaluate the response of this weed to commonly available POST herbicides in the Philippines. Germination was stimulated by seed scarification, suggesting that inhibition of germination in this species is mainly due to the hard seed coat. Germination of the scarified seeds was not influenced by the tested temperatures (alternating day/night temperatures of 25/15, 30/20, and 35/25 C) and light. The concentrations of sodium chloride, ranging from 0 to 250 mM, did not influence germination of the scarified seeds of threelobe morningglory. The osmotic potential required for 50% inhibition of maximum germination was −0.35 MPa, although some seeds germinated at −0.6 MPa. Seedling emergence was greatest for the seeds placed on the soil surface (96%), and emergence declined with increased burial depth in soil. The burial depth required for 50% inhibition of maximum emergence was 2.8 cm. No seedlings emerged from a burial depth of 6 cm or greater. Residues of up to 6 Mg ha−1on the soil surface did not influence seedling emergence of threelobe morningglory. The herbicide 2,4-D at 400 g ai ha−1provided excellent control of threelobe morningglory when applied at the four-leaf (100%) and six-leaf (97%) stages. However, at the eight-leaf stage, percent control was reduced to 67% and herbicide rate had to be increased twofold to achieve 95% control. The information gained from this study could contribute to developing components of integrated weed management strategies for threelobe morningglory. Soil inversion by tillage to bury weed seeds below their maximum depth of emergence and early application of an effective POST herbicide could serve as important tools for managing threelobe morningglory.


Weed Science ◽  
2008 ◽  
Vol 56 (5) ◽  
pp. 722-728 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Southern and India crabgrass are important grass weeds of rice in many tropical countries. Environmental factors influenced seed germination and seedling emergence of these weeds. Seeds of both species germinated at a range of alternating temperatures (25/15, 30/20, and 35/25 C day/night), though the germination of southern crabgrass was reduced at the lowest alternating temperatures (25/15 C). Light stimulated germination of both species; however, a small proportion of southern crabgrass seeds germinated in the dark. Germination of India crabgrass was influenced to a greater degree by increasing salt and water stresses than was southern crabgrass. Seeds of both species germinated over a wide range of pH between 5 and 10. Seedling emergence of both species (98% for southern crabgrass and 94% for India crabgrass) was greatest for seeds placed on the soil surface. Seed burial depth of 2 cm completely inhibited emergence of India crabgrass, whereas for southern crabgrass, this depth was 8 cm. Knowledge gained from this study is expected to contribute to developing components of integrated weed management strategies for these species.


Weed Science ◽  
2009 ◽  
Vol 57 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Synedrella is a tropical annual plant species of the family Asteraceae that is widely distributed in many crops in nearly 50 countries. Experiments were conducted to determine the influence of various environmental factors on seed germination and seedling emergence of synedrella. Germination response was greater at 30/20 C and 35/25 C than at 25/15 C fluctuating day/night temperatures. Light stimulated germination; however, a small proportion of after-ripened seeds germinated in the dark. Seedling emergence was greatest (96%) for seeds placed on the soil surface but declined with increased seed burial depth. No seedlings emerged from a depth of 4 cm. Seedling emergence and seedling dry matter declined with the addition of crop residue to the soil surface; however, higher quantities of residue than those normally found in low-yield systems were required to result in substantial reductions in emergence. Seed germination was tolerant of moderate salt concentrations (40 to 100 mM sodium chloride) and a broad range of pH (4 to 10) but was sensitive to low osmotic potentials (< −0.8 MPa). The information gained from this study could help predict the invasion potential of this species and could lead to improved management strategies.


Weed Science ◽  
2009 ◽  
Vol 57 (3) ◽  
pp. 235-240 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
David E. Johnson

Junglerice is one of the most serious grass weeds of rice in the tropics. Experiments were conducted in the laboratory and screenhouse to determine the influence of environmental factors on seed germination and seedling emergence of junglerice in the Philippines. In the laboratory, germination was stimulated by light, suggesting that seeds of this species are positively photoblastic. The tested temperatures (35/25, 30/20, and 25/15 C alternating day/night temperatures), however, did not influence germination. Germination in the laboratory was not affected by a soil pH range of 4 to 9, but was decreased by salinity (> 50 mM NaCl) and moisture stress (< −0.2 MPa osmotic potential). In the screenhouse, germination of junglerice was greatest (97%) for seeds at the soil surface, but emergence declined exponentially with increasing seed burial depth, and no seedlings emerged from seeds buried at 6 cm. In pots, seedling emergence declined markedly with the addition of rice residue to the soil surface at rates equivalent to 4 to 6 tonnes (t) ha−1. As germination of junglerice was strongly stimulated by light, and seedling emergence was optimal at shallow burial depths, this species is likely to be problematic in reduced tillage systems.


CORD ◽  
2019 ◽  
Vol 35 (01) ◽  
pp. 8
Author(s):  
S.H.S. Senarathne

Pennisetum polystachion is a major problematic monocotyledonous weed species and a perennial problem in intermediate zone of coconut plantations in Sri Lanka. This study was carried out to evaluate the impacts of different management systems on P. polystachion seedling emergence patterns.The tested treatments were application of glyphosate (T1), cover cropping with Pueraria phaseoloides (T2), tractor harrowing (T3), tractor slashing (T4) and tractor ploughing (T5). All the treatments were applied twice a year except T2. As T2 cover crop at the initiation of the experiment and over grown conditions were managed by harrowing once a year. Based on the reduction in weed biomass, cover cropping (T2) was the best to reduce the P. polystachion population and to reduce P. polystachion seedling emergence density in the field. Chemical weeding was the second-best method to control the P. polystachion population in the field. The effectiveness of slashing in reducing weed seedling emergence density was lower than cover cropping and chemical weeding methods. The weed seedling emergence densities were almost similar in ploughed and harrowed plots. The seed depth of emerged seedling was very high in harrowed and ploughed treatments when compared to other treatments. Results given by T3 and T5 indicates that loosening the soil creates more favorable environment for the germination of weed seeds buried in soil. Therefore, it can be argued that the elimination of weed seeds in the top 2cm or 4cm in the soil seed bank by any means is likely to reduce the level of weed infestation by about 60% to 95%. Results also indicated that burying rhizomes in ploughing and harrowing treatment plots at the depths below 30 - 40 cm is effective in controlling germination of this weed species. This experiment also suggested that keeping rhizomes on the soil surface without burying for durations of 5 – 15 days would produce weak plants with poor development.


2019 ◽  
Vol 37 ◽  
Author(s):  
R.M. IKRAM ◽  
A. TANVEER ◽  
H.H. ALI ◽  
M.E. SAFDAR ◽  
M.M. JAVAID ◽  
...  

ABSTRACT: The species Euphorbia dracunculoides and Astragalus are problematic weeds of arid chickpea in the chickpea mono-cropping system in Pakistan. The influence of various ecological factors on germination and seedling emergence characteristics of these weeds was determined under laboratory conditions. The results suggested that seed germination of both species was 50% at 15 oC under light conditions, and germination decreased when the temperature was increased. The increase in drought stress from 2.5 to 15% significantly decreased germination of E. dracunculoides and Astragalus spp. Both species failed to germinate at the osmotic potential of -3.02 MPa. The increase in field capacity from 25 to 100% increased emergence percentage and emergence index of both weeds. A pH range of 6 to 9 did not influence seed germination of both species and they were able to germinate at a wide range of pH conditions. Both weeds were very sensitive to salinity; however, a few seeds (10%) of Astragalusspp. germinated even at a 150 mM sodium chloride concentration. To check the effect of burial depth, seeds were placed in pots under seeding depths of 0 to 6 cm at an interval of 1 cm, respectively. Maximum emergence was attained at the soil surface and emergence declined with increasing depths. Seedling emergence of E. dracunculoides was higher than that of Astragalusspp. at all burial depths. Studies on germination ecology of these two weeds will offer insights into their behavior under different environmental conditions. Their germination responses and growth patterns under different ecological factors will help us to design an efficient management strategy to control these two troublesome weeds.


Weed Science ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 503-509 ◽  
Author(s):  
Jialin Yu ◽  
Shaun M. Sharpe ◽  
Nathan S. Boyd

AbstractExperiments were conducted to determine the effect of various environmental factors and burial depth on germination and seedling emergence of common beggar’s-tick [Bidens alba (L.) DC.] seeds at two different stages of afterripening. Mature B. alba seeds were stored at 4 C for 3 to 5 mo (new seed lot) and 13 to 15 mo (old seed lot) until experiment initiation. Germination exponentially decreased with increasing moisture stress. Germination rate decreased from 87 ± 2.9% to 13 ± 6.1% as osmotic potential decreased from 0 to −0.5 MPa and was completely inhibited at osmotic potentials below −0.83 MPa. A large portion of the new seeds tested positively photoblastic, but seeds that had afterripened for 1 additional year were partially desensitized to the light requirement. New and old seeds still germinated to a greater percentage in the presence of light than under continuous dark at temperatures ranging from 15 to 35 C. Both new and old seeds germinated over a range of temperatures from 5 to 35 C, but the optimum temperatures for germination was 15 to 30 C in the presence of light. Regardless of seed lot, seedling emergence was the greatest when seeds were sown at the soil surface. Seedling emergence was abruptly reduced when burial depth was 1 cm or greater. Based on these results, we conclude that shallow cultivation could effectively suppress this population of B. alba from emerging when incorporated into an integrated control strategy. The information obtained in this research identifies some important factors that facilitate the widespread presence of B. alba in Florida and may contribute to weed management programs.


Sign in / Sign up

Export Citation Format

Share Document