Imidazolinone-Resistant Wheat Acetolactate Synthase In Vivo Response to Imazamox

2005 ◽  
Vol 19 (3) ◽  
pp. 539-548 ◽  
Author(s):  
Curtis R. Rainbolt ◽  
Donald C. Thill ◽  
Robert S. Zemetra ◽  
Dale L. Shaner

Several experiments were conducted to evaluate the utility of an in vivo acetolactate synthase (ALS) assay for comparing sensitivity to imazamox among imidazolinone-resistant wheat cultivars/lines. Ten single-gene imidazolinone-resistant winter wheat cultivars/lines, one two-gene and four single-gene imidazolinone-resistant spring wheat cultivars/lines, and three pairs of heterozygous and homozygous imidazolinone-resistant winter wheat lines were evaluated in the assay experiments. Additionally, a dose-response assay was conducted to evaluate the tolerance of several imidazolinone-resistant wheat cultivars to imazamox on a whole plant level. The I50value (i.e., the imazamox dose that inhibited ALS activity by 50%) of the winter wheat cultivar ‘Above’ was 54 to 84% higher than the I50values of 99-420, 99-433, and CV-9804. However, based on the results of this study, it is unclear whether genetic background or market class (hard red winter vs. soft white winter) influences the level of ALS inhibition by imazamox. Teal 15A, the two-gene imidazolinone-resistant spring wheat cultivar, had an I50value that was two to three times greater than the I50value of the single-gene imidazolinone-resistant spring wheat cultivars/lines. The heterozygous imidazolinone-resistant wheat lines had I50values that were 69 to 81% less than the I50values of the homozygous lines. In the whole plant dose response, theR50values (i.e., the imazamox dose that reduced biomass by 50%) of the susceptible cultivars Brundage 96 and Conan were 15 to 17 times less than the homozygous single-gene imidazolinone-resistant winter and spring cultivars/lines, whoseR50values were about 1.7 times less than theR50value of the two-gene imidazolinone-resistant spring wheat line, Teal 15A. The results of the in vivo ALS imazamox assays and the whole plant imazamox dose-response assay were similar, indicating that the in vivo assay can be used to accurately and quickly compare resistance between imidazolinone-resistant wheat cultivars/lines.

2012 ◽  
Vol 26 (3) ◽  
pp. 405-409 ◽  
Author(s):  
Timothy L. Grey ◽  
George S. Cutts ◽  
Jerry Johnson

Inability to control Italian ryegrass in soft red winter wheat can result in reduced yields, reduced quality, or both and cause double-crop planting to be inefficient. Experiments were conducted at Plains, GA, to evaluate diclofop-susceptible Italian ryegrass control in a single-gene imidazolinone (IMI)-resistant wheat using imazamox, mesosulfuron, and diclofop. Treatments were applied at variable rates and tank mixtures to the IMI-resistant soft red winter wheat ‘AGS CL7’ at Feekes' stages 1 (EMERG) or 2 (POST). Lower Italian ryegrass control of 78% or less was observed with single treatments of EMERG or POST herbicide applications. Diclofop provided maximum Italian ryegrass control of 79% or greater with minimal injury to wheat cultivar AGS CL 7. Sequential applications of diclofop at EMERG followed by imazamox, mesosulfuron, or diclofop POST provided maximum Italian ryegrass control at 86% or greater. The efficacy of the acetolactate synthase (ALS)–inhibiting herbicides registered for wheat weed control for AGS CL7 and ‘AGS 2000’ (conventional) was also evaluated. Mesosulfuron at 40 g ai ha−1resulted in 17% injury at 7 d after application (DAA), tribenuron at 40 g ai ha−1caused 9% injury 7 DAA, and pyroxsulam at 190 g ai ha−1caused 7% injury at 7 DAA, but was transient and not observed after heading or at harvest. No yield differences were noted between the nontreated control for AGS 2000 and AGS CL 7 for chlorsulfuron, mesosulfuron, thifensulfuron, tribenuron, prosulfuron, and pyroxsulam.


2015 ◽  
Vol 148 (2) ◽  
pp. 229-238 ◽  
Author(s):  
R.J. Lamb ◽  
M.A.H. Smith ◽  
I.L. Wise ◽  
R.I.H. McKenzie

AbstractNine winter wheat cultivars (Triticum aestivum Linnaeus) (Poaceae) were the source of the Sm1 gene for resistance to wheat midge, Sitodiplosis mosellana (Géhin) (Diptera: Cecidomyiidae), in spring wheat. All nine showed antibiosis characteristic of Sm1, as expected. They also showed oviposition deterrence and reduced hatch, which contributed to overall resistance. The overall level of resistance of the nine winter wheat cultivars was usually lower than that of resistant spring wheat lines in laboratory trials, but equally high in a field trial. Five of seven other North American winter wheat cultivars also showed resistance. Three of these were grown in the 1920s and earlier, before wheat varieties were officially registered. One of these, “Mediterranean”, came from Europe in the 1880s and may be the origin of Sm1 in North America. Two of 11 Chinese winter wheat lines showed resistance to wheat midge but at a lower level than that characteristic of Sm1. Widespread resistance in North American winter wheat cultivars was unexpected because wheat midge has not been a pest of winter wheat for many decades. North American winter wheat cultivars can provide sources of resistance to wheat midge, particularly high levels of oviposition deterrence as exhibited by “Goens” and “Rawhide”.


2003 ◽  
Vol 54 (2) ◽  
pp. 193 ◽  
Author(s):  
P. A. Riffkin ◽  
P. M. Evans ◽  
J. F. Chin ◽  
G. A. Kearney

The aim of this experiment was to identify suitable cultivars and sowing times for winter and spring wheat types in the high rainfall environment of south-western Victoria. Spring and winter wheat cultivars with a range of flowering times were sown at 3 (April–June) and 6 (April–September) sowing times in 1997 and 1999, respectively, at Hamilton. Strong cultivar × sowing time interactions occurred. Grain yields ranged from 0.3 t/ha for a winter wheat (cv. Declic) sown in September to 8 t/ha for a spring wheat (cv. Silverstar) sown in June. The early-maturing spring wheat cultivar Silverstar, initially bred for the lower rainfall Mallee environment, produced the highest yields in both years from all sowing times except April. Our data indicate that higher yields are achieved from crops that flower earlier than is currently recommended. The optimum flowering period in south-western Victoria needs to be redefined, especially since many crops are now sown on raised beds.


1997 ◽  
Vol 11 (2) ◽  
pp. 241-247 ◽  
Author(s):  
Christy L. Sprague ◽  
Edward W. Stoller ◽  
Loyd M. Wax

Five biotypes of common cocklebur that were not controlled with acetolactate synthase (ALS)-inhibiting herbicides were tested in greenhouse and laboratory studies to determine the magnitude of resistance and cross-resistance to four ALS-inhibiting herbicides. In vivo inhibition of ALS was also evaluated. Based on phytotoxicity, all five ALS-resistant biotypes of common cocklebur were > 390 times more resistant than the susceptible biotype to imazethapyr. However, only four of these biotypes were also resistant to another imidazolinone, imazaquin. Two biotypes were cross-resistant to the sulfonylurea, chlorimuron, and the triazolopyrimidine sulfonanilide, NAF-75. One biotype demonstrated intermediate susceptibility to imazaquin, chlorimuron, and NAF-75. In all cases, the resistance exhibited at the whole plant level was associated with an insensitive ALS.


Weed Science ◽  
1996 ◽  
Vol 44 (3) ◽  
pp. 757-762 ◽  
Author(s):  
B. Clifford Gerwick ◽  
Csaba T. Cseke ◽  
Gerry Deboer ◽  
William A. Kleschick ◽  
Paul R. Schmitzer

Eight triazolopyrimidine sulfonanilides were tested for metabolic stability in a number of crop and weed species. These data, along with in vitro determinations of activity (I50) against acetolactate synthase, successfully described the in vivo activity of these compounds in a two-parameter model. Whole plant activity increased with increasing compound stability and decreasing I50 (r2 =.78, N = 36). The difficulty in obtaining metabolic stability data during a structure optimization program prompted a study with substituent parameters in models of in vivo activity. Models describing whole plant activity in jimsonweed were developed using a series of 5-methyl triazolopyrimidine sulfonanilides that differed only in ortho and meta substituents on the aniline ring. The I50 term and clogP were most important to jimsonweed activity. Hence, in vitro activity (I50) may be a useful component of whole plant structure activity models to aid in identification of barriers to in vivo performance.


1970 ◽  
Vol 50 (2) ◽  
pp. 137-140 ◽  
Author(s):  
M. N. GRANT ◽  
HUGH McKENZIE

Significant levels of heterosis were demonstrated in F1 yield trials from crosses between three spring and three winter wheats (T. aestivum L.): Thatcher × Winalta, Cypress × Kharkov 22 MC, and Lee × Cheyenne. Yields up to 40% higher than those of the spring wheat parent were attributed to heterosis resulting from hybridization of genetically diverse spring and winter types. To our knowledge this is the first published report of heterosis for yield in F1 hybrids between spring and winter wheat cultivars. This information has significance in both hybrid wheat and conventional breeding programs.


2005 ◽  
Vol 143 (2-3) ◽  
pp. 151-160 ◽  
Author(s):  
W. Z. JIANG ◽  
C. R. IRELAND

The aim of the research was to describe and characterize the physiological basis of Mn use efficiency among a range of old and modern UK wheat cultivars grown in Mn-depleted solution culture and to ascertain whether the existence of Mn use efficiency conferred a yield advantage under manganese stress conditions in the field. Results of solution culture experiments demonstrated that the old spring wheat cv. Maris Butler is relatively Mn efficient when grown in Mn-deficient conditions in comparison with both a modern winter wheat, cv. Claire, and a modern spring wheat, cv. Paragon. The mean dry weight gain of plants of cv. Maris Butler grown in Mn-depleted nutrient solution was 0·49 of that shown by plants in Mn-sufficient culture, whereas in cvs. Paragon and Claire the equivalent values were 0·38 and 0·21 respectively. When grown in Mn-deficient soil in a farm-based field trial, cv. Maris Butler showed significantly improved (P<0·05) dry matter accumulation and grain yield compared with other spring wheats including cv. Paragon. There was no significant variation in leaf Mn content between the cultivars examined, either under sufficient or depleted Mn supply; however, cv. Maris Butler showed both a relatively high maximum light-saturated rate of photosynthesis and a high photosynthetic apparent quantum yield (based on O2 evolution) when grown under Mn deficiency. It is argued that the apparent Mn use efficiency of cv. Maris Butler is related to superior internal utilization of Mn, resulting in an increased photosynthetic photosytem II efficiency rather than improved Mn uptake and accumulation. The results suggest that the wheat cultivar Maris Butler may provide a potentially useful source of parental material for future crop improvement programmes designed to produce wheat lines resistant to depleted Mn supply.


1981 ◽  
Vol 61 (3) ◽  
pp. 719-721 ◽  
Author(s):  
R. J. BAKER

Segregation for seed coat color was studied in F2 populations of crosses between eight red-seeded and three white-seeded cultivars of spring wheat (Triticum aestivum L. em Thell). Red Bobs and Pitic 62 each possessed a single gene for red seed coat color; Glenlea and NB320 each carried two genes; Neepawa, Park and RL4137 each possessed three genes. Data for crosses with Manitou were not sufficient to distinguish between the presence of two or three genes for seed coat color in this cultivar.


2005 ◽  
Vol 83 (2) ◽  
pp. 99-109 ◽  
Author(s):  
D.S. Volenberg ◽  
D.E. Stoltenberg ◽  
C.M. Boerboom

Green foxtail (Setaria viridis) plants putatively resistant to acetolactate synthase (ALS) inhibitors were identified in a Wisconsin USA no-tillage soybean (Glycine max) field in 1999. Resistance to imidazolinone and sulfonylurea herbicides was characterized at the whole-plant level and enzyme level. Three- to four-leaf stage green foxtail plants were 1020, 53, and 6.5-fold resistant to imazethapyr, imazamox, and nicosulfuron, respectively, compared to susceptible plants. In vivo ALS was 1300 and 1.7-fold resistant to imazethapyr and nicosulfuron, respectively. These results suggested that this green foxtail accession was highly resistant to imazethapyr and imazamox, and that resistance was associated with an insensitive ALS enzyme.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 954-961 ◽  
Author(s):  
Richard W. Smiley ◽  
Hui Yan

Crown rot caused by Fusarium pseudograminearum reduces the yield of wheat (Triticum aestivum) in Oregon. Observations of crown rot symptoms in traditional breeding and yield testing nurseries have not been useful for describing tolerance ratings of wheat cultivars. Yield data from inoculated experiments were therefore evaluated to determine if differences in cultivar response could be identified. A comparison of yields in inoculated and noninoculated plots was made for one group of spring wheat entries and four groups of winter wheat entries. Significant differences among spring wheat entries were identified and were validated against standards for tolerance and intolerance to F. pseudograminearum in Australia. Locally adapted and Australian standards exhibited a comparable range of yield reduction due to inoculation. Spring wheat tolerance reactions can be accurately described using as few as 24 yield comparisons. However, this screening method will not be practical for winter wheat due to stronger effects of year and location on the phenotypic tolerance response, requiring about 95 yield comparisons to accurately define the crown rot phenotype of a winter wheat cultivar.


Sign in / Sign up

Export Citation Format

Share Document