Changes in Herbicide Use Patterns and Production Practices Resulting from Glyphosate-Resistant Crops

2006 ◽  
Vol 20 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Bryan G. Young

Recent shifts in herbicide use patterns can be attributed to rapid, large-scale adoption of glyphosate-resistant soybean and cotton. A dramatic increase in glyphosate use is the most obvious change associated with the adoption of glyphosate-resistant crops. Consequently, the diversity of herbicides used for weed management in these crops has declined, particularly in soybean. To date, the availability of glyphosate-resistant corn has limited the use of glyphosate in corn. While exploiting the benefits of glyphosate-resistant crops, many growers have abandoned the principles of sound weed and herbicide-resistance management. Instead of incorporating glyphosate into a resistance management strategy utilizing multiple herbicide sites of action, many growers rely exclusively upon glyphosate for weed control. Although it is difficult to establish a clear relationship between the adoption of glyphosate-resistant crops and changes in other crop production practices, the increase in no-till and strip-till production of cotton and soybean between 1995 and 2002 may have been facilitated by glyphosate-resistant crops.

Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 161 ◽  
Author(s):  
Hugh J. Beckie ◽  
Michael B. Ashworth ◽  
Ken C. Flower

This review covers recent developments and trends in herbicide-resistant (HR) weed management in agronomic field crops. In countries where input-intensive agriculture is practiced, these developments and trends over the past decade include renewed efforts by the agrichemical industry in herbicide discovery, cultivation of crops with combined (stacked) HR traits, increasing reliance on preemergence vs. postemergence herbicides, breeding for weed-competitive crop cultivars, expansion of harvest weed seed control practices, and advances in site-specific or precision weed management. The unifying framework or strategy underlying these developments and trends is mitigation of viable weed seeds into the soil seed bank and maintaining low weed seed banks to minimize population proliferation, evolution of resistance to additional herbicidal sites of action, and spread. A key question going forward is: how much weed control is enough to consistently achieve the goal of low weed seed banks? The vision for future HR weed management programs must be sustained crop production and profitability with reduced herbicide (particularly glyphosate) dependency.


Weed Science ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 179-185
Author(s):  
Chun Liu ◽  
Paul Neve ◽  
Les Glasgow ◽  
R. Joseph Wuerffel ◽  
Micheal D. K. Owen ◽  
...  

AbstractDiversity is key for sustainable weed management and can be achieved via both chemical and nonchemical control tactics. Genetically modified crops with two-way or three-way stacked herbicide-tolerant traits allow use of herbicide mixtures that would otherwise be phytotoxic to the crop. Early weed management (EWM) strategies promote the use of PRE herbicides with residual activity to keep the field free of weeds early in the season for successful crop establishment. To evaluate the respective sustainability and practicality of the two chemical-based management tactics (i.e., stacked traits and EWM), we used a population model of waterhemp, Amaranthus tuberculatus (Moq.) Sauer (syn. rudis), to simulate the evolution of resistance in this key weed species in midwestern U.S. soybean [Glycine max (L.) Merr.] agroecosystems. The model tested scenarios with a varying number of herbicide sites of action (SOAs), application timings (PRE and POST), and preexisting levels of resistance. Results showed that both tactics provided opportunity for controlling resistant A. tuberculatus populations. In general, each pass over the field should include at least two effective herbicide SOAs. Nevertheless, the potential evolution of cross-resistance may void the weed control programs embraced by stacked traits and diverse herbicide SOAs. Economic calculations suggested that the diversified programs could double long-term profitability when compared to the conventional system, because of improved yield and grain quality. Ultimately, the essence of a sustainable herbicide resistance management strategy is to be proactive. Although a herbicide-dominated approach to diversifying weed management has been prevalent, the increasing presence of weed populations with multiple resistance means that finding herbicides to which weed populations are still susceptible is becoming increasingly difficult, and thus the importance of reintroducing cultural and mechanical practices to support herbicides must be recognized.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2010 ◽  
Vol 25 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Randy L. Anderson

AbstractWeeds are a major obstacle to successful crop production in organic farming. Producers may be able to reduce inputs for weed management by designing rotations to disrupt population dynamics of weeds. Population-based management in conventional farming has reduced herbicide use by 50% because weed density declines in cropland across time. In this paper, we suggest a 9-year rotation comprised of perennial forages and annual crops that will disrupt weed population growth and reduce weed density in organic systems. Lower weed density will also improve effectiveness of weed control tactics used for an individual crop. The rotation includes 3-year intervals of no-till, which will improve both weed population management and soil health. Even though this rotation has not been field tested, it provides an example of designing rotations to disrupt population dynamics of weeds. Also, producers may gain additional benefits of higher crop yield and increased nitrogen supply with this rotation design.


2006 ◽  
Vol 46 (9) ◽  
pp. 1177 ◽  
Author(s):  
J. A. Werth ◽  
C. Preston ◽  
G. N. Roberts ◽  
I. N. Taylor

Forty growers in 4 major cotton-growing regions in Australia were surveyed in 2003 to investigate how the adoption of glyphosate-tolerant cotton (Roundup Ready) had influenced herbicide use, weed management techniques, and whether changes to the weed spectrum could be identified. The 10 most common weeds reported on cotton fields were the same in glyphosate-tolerant and conventional fields in this survey. Herbicide use patterns were altered by the adoption of glyphosate-tolerant cotton with up to 6 times more glyphosate usage, but 21% fewer growers applying pre-emergence herbicides in glyphosate-tolerant fields. Other weed control practices such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing were only reduced marginally. However, growers indicated that management practices are likely to change over time, especially with the introduction of enhanced glyphosate tolerance technology (Roundup Ready Flex), and anticipate a 32% decrease in the number of growers using alternative weed management practices. To date, management practices other than glyphosate use have not changed markedly in glyphosate-tolerant cotton indicating a conservative approach by growers adopting this technology and reflecting the narrow window of herbicide application. The range of weed control options still being employed in glyphosate-tolerant cotton would not increase the risk of glyphosate resistance development.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 727-734 ◽  
Author(s):  
Christopher M. Budd ◽  
Nader Soltani ◽  
Darren E. Robinson ◽  
David C. Hooker ◽  
Robert T. Miller ◽  
...  

The control of glyphosate-resistant (GR) horseweed (Conyza canadensis) in soybean has been variable with glyphosate plus saflufenacil. The objective of this research was to determine the biologically effective rate (BER) of saflufenacil, saflufenacil mixed with glyphosate, and metribuzin mixed with saflufenacil and glyphosate applied preplant (PP) for the control of GR horseweed in no-till soybean; a study was conducted to determine each of the three treatments. For each study, seven field sites infested with GR horseweed were used over a 2-yr period (2014, 2015). Saflufenacil alone at 25 and 36 g ai ha–1 provided 90 and 95% control of GR Horseweed 8 wk after application, while the BER to achieve 98% control was outside of the treatment range tested. The saflufenacil plus glyphosate (900 g ai ha–1) BER experiment found less saflufenacil was required as 25, 34, and 47 g ha–1 provided 90, 95, and 98% control of GR horseweed respectively. The metribuzin BER experiment found 61, 261, and 572 g ha–1 was required to provide 90, 95 and 98% control of GR horseweed, respectively, mixed with saflufenacil (25 g ha–1) and glyphosate (900 g ha–1). The addition of metribuzin with the recommended rate of saflufenacil (25 g ha–1) plus glyphosate improved control and a second effective herbicide mode of action for the control of GR horseweed. The use of a threeway herbicide mixture can be an effective weed management strategy to control GR horseweed in soybean.


2014 ◽  
Vol 28 (3) ◽  
pp. 471-478 ◽  
Author(s):  
Nevin C. Lawrence ◽  
Ian C. Burke

Rattail fescue is a problematic weed for small grain producers in the Pacific Northwest when no-till production practices are used. Pyroxsulam and pyroxasulfone are two herbicides not previously evaluated for control of rattail fescue. Pyroxasulfone provided levels of control (> 74%) similar to flufenacet. Pyroxsulam did not consistently control (21 to 71%) rattail fescue. Rattail fescue biomass was reduced by pyroxasulfone and flufenacet compared to the nontreated control. Effective consistent rattail fescue control was only achieved where PRE herbicides were used. When managing rattail fescue, PRE herbicides pyroxasulfone and flufenacet plus metribuzin are essential components of an integrated management strategy.


2013 ◽  
Vol 27 (2) ◽  
pp. 352-361
Author(s):  
Mohammad Ghorbani ◽  
Surendra Kulshreshtha

Inputs, including herbicides, used in crop production may create negative environmental impacts. One solution to minimize these adverse effects is the adoption of integrated weed management (IWM) with the intention of reducing herbicide use. This study, conducted in 2010, estimates the willingness of farmers to pay for the adoption of more effective weed management methods. Results suggest that the willingness to pay (WTP) for IWM is greater than the WTP for other weed management methods, including chemical weed management and chemical and mechanical weed management. This study also identified a number of factors that influence the adoption of IWM on wheat farms in Iran using a multinomial logit model. Total annual income, area under irrigated wheat, wheat yield loss due to weeds, perennial nature of the weeds, and having awareness of weed resistance to herbicides had a positive effect on the adoption of IWM practices. However, having rain-fed (dryland) wheat cultivation and a larger number of plots on the farm had a negative influence on the choice of IWM.


Weed Science ◽  
2004 ◽  
Vol 52 (1) ◽  
pp. 8-13 ◽  
Author(s):  
Michael J. Walsh ◽  
Stephen B. Powles ◽  
Brett R. Beard ◽  
Ben T. Parkin ◽  
Sally A. Porter

Populations of wild radish were collected from two fields in the northern Western Australian wheatbelt, where typical herbicide-use patterns had been practiced for the previous 17 seasons within an intensive crop production program. The herbicide resistance status of these populations clearly established that there was multiple-herbicide resistance across many herbicides from at least four modes of action. One population exhibited multiple-herbicide resistance to the phytoene desaturase (PDS)–inhibiting herbicide diflufenican (3.0-fold), the auxin analog herbicide 2,4-D (2.2-fold), and the photosystem II–inhibiting herbicides metribuzin and atrazine. Another population was found to be multiply resistant to the acetolactate synthase–inhibiting herbicides, the PDS-inhibiting herbicide diflufenican (2.5-fold), and the auxin analog herbicide 2,4-D amine (2.4-fold). Therefore, each population has developed multiple-herbicide resistance across several modes of action. The multiple resistance status of these wild radish populations developed from conventional herbicide usage in intensive cropping rotations, indicating a dramatic challenge for the future control of wild radish.


2016 ◽  
Vol 30 (1) ◽  
pp. 29-35 ◽  
Author(s):  
J. Caleb Fish ◽  
Eric P. Webster ◽  
David C. Blouin ◽  
Jason A. Bond

A study was established to evaluate interactions between imazamox at 0 and 44 g ai ha−1mixed with propanil at 0, 1,120, 2,240, 3,360, and 4,480 g ai ha−1for the control of red rice and barnyardgrass. Blouin's Modified Colby's procedure was used to test for interactions. At 7 d after treatment (DAT), a synergistic response occurred for red rice treated with imazamox at 44 g ha−1mixed with propanil at 3,360 and 4,480 g ha−1by increasing expected control of 62% to an observed control of 67 and 75%, respectively, and the synergistic response continued across all evaluations through 49 DAT. No antagonism occurred for any imazamox plus propanil mixture for red rice control. An antagonistic response was shown for barnyardgrass control with imazamox at 44 g ha−1mixed with any rate of propanil, at 7 DAT. However, imazamox plus propanil at 4,480 g ha−1resulted in a neutral response at 14 through 49 DAT. Rice treated with imazamox plus propanil at 4,480 g ha−1plus imazamox resulted in a yield of 6,640 kg ha−1. The synergistic response observed for red rice control with a mixture of imazamox plus propanil can benefit producers by increasing control of red rice, and this mixture contains two different modes of action that can be part of an overall resistance management strategy.


Sign in / Sign up

Export Citation Format

Share Document