Foliar and Root Absorption and Translocation of Bispyribac-sodium in Cool-season Turfgrass

2006 ◽  
Vol 20 (4) ◽  
pp. 1015-1022 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Response of creeping bentgrass, annual bluegrass, and Kentucky bluegrass to foliar, soil, or foliar plus soil applications of bispyribac-sodium was evaluated in greenhouse studies. Soil-alone and foliar plus soil applications of bispyribac-sodium at 148 or 296 g ai/ha resulted in greater injury and shoot dry weight reduction of all species 28 d after treatment (DAT) compared to foliar-alone treatments. Creeping bentgrass was less injured than annual or Kentucky bluegrass regardless of application placement. Further studies evaluated foliar and root absorption and translocation of14C-bispyribac-sodium in creeping bentgrass, annual bluegrass, Kentucky bluegrass, and roughtstalk bluegrass. Foliar absorption into creeping bentgrass was less than that of other species at most harvest timings from 4 to 72 h after treatment. Annual and roughstalk bluegrass translocated greater amounts of foliar-absorbed14C to the crown and shoots compared to creeping bentgrass. Annual and roughstalk bluegrass accumulated approximately 47% more14C per dry weight of plant tissue than creeping bentgrass and 74% more than Kentucky bluegrass after 72 h in nutrient solution containing14C-bispyribac-sodium. Annual and roughstalk bluegrass translocated approximately 80% of root-absorbed14C to shoots, whereas creeping bentgrass and Kentucky bluegrass translocated slightly less (66% of absorbed for both species). These studies suggest that bispyribac-sodium is readily absorbed by roots and translocated to shoots which may contribute to its total activity within a plant. In addition, creeping bentgrass displayed lower amounts of foliar and root absorption and subsequent translocation than annual and roughstalk bluegrass which may contribute to greater bispyribac-sodium tolerance displayed by creeping bentgrass.

Weed Science ◽  
2013 ◽  
Vol 61 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Jialin Yu ◽  
Patrick E. McCullough ◽  
William K. Vencill

Amicarbazone controls annual bluegrass in cool-season turfgrasses but physiological effects that influence selectivity have received limited investigation. The objective of this research was to evaluate uptake, translocation, and metabolism of amicarbazone in these species. Annual bluegrass, creeping bentgrass, and tall fescue required < 3, 56, and 35 h to reach 50% foliar absorption, respectively. At 72 h after treatment (HAT), annual bluegrass and creeping bentgrass translocated 73 and 70% of root-absorbed14C to shoots, respectively, while tall fescue only distributed 55%. Annual bluegrass recovered ≈ 50% more root-absorbed14C in shoots than creeping bentgrass and tall fescue. Creeping bentgrass and tall fescue metabolism of amicarbazone was ≈ 2-fold greater than annual bluegrass from 1 to 7 d after treatment (DAT). Results suggest greater absorption, more distribution, and less metabolism of amicarbazone in annual bluegrass, compared to creeping bentgrass and tall fescue, could be attributed to selectivity of POST applications.


1989 ◽  
Vol 69 (1) ◽  
pp. 297-304
Author(s):  
C. P. M. WRIGHT ◽  
J. L. EGGENS ◽  
K. CAREY ◽  
R. J. HINES

The objective of this study was to determine if total plant leaf numbers in a large data set could be predicted from individual plant shoot dry weight measurements using regression equations derived from a subset of the data. The species used were annual bluegrass (Poa annua L.) and creeping bentgrass (Agrostis palustris Huds. ’Penncross’). There was significant correlation between leaf number and shoot dry weight measurements in data subsets. Leaf numbers for the total data set were estimated by the regression equation derived from a subset consisting of pooled data from one, two or three replicates. This procedure was assessed by comparing predictions from regression equations with actual values, using a number of different sets of replicates to generate the regression equation. On the basis of the results we suggest that, for annual bluegrass and creeping bentgrass in greenhouse pot culture, this procedure can be used to accurately estimate leaf number data for remaining replicates within an experimental design, once regression coefficients are established from pooled data from two replicates.Key words: Leaf number estimation, shoot dry weight, annual bluegrass, creeping bentgrass


HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 371-373 ◽  
Author(s):  
Xia Xu ◽  
Charles F. Mancino

Many biotypes of annual bluegrass (Poa annua L.) are found on golf course putting greens. Although normally considered an invasive weed, annual bluegrass can provide as good a putting surface as creeping bentgrass (Agrostis palustris Huds.). The most desirable biotypes of annual bluegrass are primarily vegetative and have a low flowering frequency. Whether the nutritional requirements of annual bluegrass biotypes differ from one another or from creeping bentgrass is unknown. The response of three flowering (FAB, high seedhead production) and three vegetative (VAB, low seedhead production) biotypes of annual bluegrass (AB), and the three parents of `Penncross' creeping bentgrass (CB) to varying levels of iron (Fe) in greenhouse sand culture was investigated. After establishment, clones were grown for 3 weeks and irrigated with a half-strength Hoagland's solution containing 0, 2, 4, 6, and 8 mg·L-1 Fe in citrate-Fe. Shoot and root responses to Fe were similar for the VAB and FAB biotypes. However, VAB had higher color ratings (darker green leaf color) with Fe treatment level at 4 mg·L-1 than did FAB or CB, which required 6 mg·L-1 Fe for acceptable color. Growth of creeping bentgrass was greater than that of annual bluegrass at every Fe level tested. Shoot dry weights of CB increased significantly with Fe treatment level up to 6 mg·L-1. Shoot dry weight of AB increased up to 4 mg·L-1 Fe and then declined at ≥6 mg·L-1. Root growth of CB increased up to 6 mg·L-1 Fe, but then decreased significantly at 8 mg·L-1 Fe. Root growth of AB increased slightly up to 4 mg·L-1 Fe and then declined at 6 and 8 mg·L-1. Shoot tissue concentrations of Fe were similar for AB and CB at each Fe rate tested except at 8 mg·L-1 Fe, where Fe levels in CB were significantly lower. Based on this work, creeping bentgrass and annual bluegrass respond differently to Fe nutrition, but different biotypes of annual bluegrass appear to respond similarly.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1552-1555 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Previous research has demonstrated that bispyribac-sodium can selectively control established annual bluegrass (Poa annua L.) in creeping bentgrass (Agrostis stolonifera L.). Annual bluegrass is also a problematic weed in other cool-season turfgrass species. However, the relative tolerance of other cool-season turfgrass species to bispyribac is not known. Field experiments were conducted at Adelphia, N.J., in 2002 and 2003 to gain understanding of the phytotoxic effects that bispyribac may have on kentucky bluegrass (Poa pratensis L.), perennial ryegrass (Lolium perenne L.), tall fescue (Festuca arundinacea (L.) Schreb.), and chewings fine fescue (Festuca rubra L. subsp. commutata Gaud.). Single applications of bispyribac at 37 to 296 g·ha–1 were applied to mature stands of each species on 11 June, 2002 and 10 June, 2003. Visual injury was evaluated and clippings were collected 35 and 70 days after treatment (DAT). Visual injury at 35 DAT increased as bispyribac rate increased. Kentucky bluegrass was least tolerant to bispyribac with up to 28% injury when applied at 296 g·ha–1. Injury on other species did not exceed 20%. Initial injury on perennial ryegrass, tall fescue, and chewings fine fescue was primarily in the form of chlorosis, while kentucky bluegrass exhibited more severe stunting and thinning symptoms. Bispyribac at rates from 74 to 296 g·ha–1 reduced kentucky bluegrass clipping weights by 19% to 35%, respectively, as compared to the untreated control at 35 DAT in 2002. Initial visual injury on perennial ryegrass, tall fescue, and chewings fine fescue dissipated to ≤5% by 70 DAT. However, recovery of kentucky bluegrass was less complete. These studies suggest that bispyribac-sodium has potential to severely injure kentucky bluegrass. Injury on perennial ryegrass, tall fescue, and chewings fine fescue appears to be less severe and persistent; therefore, bispyribac can be used for weed control in these species. Chemical names used: 2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoic acid (bispyribac-sodium).


2009 ◽  
Vol 23 (4) ◽  
pp. 519-523 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Spray adjuvants may enhance bispyribac–sodium efficacy for annual bluegrass control but chelated iron may be needed to reduce potential turf discoloration. Field and laboratory experiments were conducted to investigate the influence of iron and adjuvants on bispyribac–sodium efficacy for annual bluegrass control in cool-season turf. In laboratory experiments,14C–bispyribac–sodium foliar absorption increased in four grasses by approximately 50 and 100% when applied with a nonionic surfactant and methylated seed oil, respectively, compared to the herbicide alone. Chelated iron did not reduce14C–bispyribac–sodium absorption. In field experiments, spray adjuvants enhanced annual bluegrass control from bispyribac–sodium at 37 g ai/ha but not at 74 g ai/ha. Iron did not reduce annual bluegrass control from bispyribac–sodium, with or without adjuvants, but mitigated creeping bentgrass discoloration for all treatments.


2010 ◽  
Vol 24 (4) ◽  
pp. 461-470 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart ◽  
Dan Weisenberger ◽  
Zachary J. Reicher

Amicarbazone has potential for selective annual bluegrass control in cool-season turfgrasses, but seasonal application timings may influence efficacy. To test this hypothesis, field experiments in New Jersey and Indiana investigated amicarbazone efficacy from fall or spring applications and growth chamber experiments investigated the influence of temperature on efficacy. Fall treatments were more injurious to creeping bentgrass and Kentucky bluegrass than spring applications, but fall applications were also more efficacious for annual bluegrass control. In growth chamber experiments, injury and clipping weight reductions were exacerbated by increased temperatures from 10 to 30 C on annual bluegrass, creeping bentgrass, Kentucky bluegrass, and perennial ryegrass. Results suggest that amicarbazone use for annual bluegrass control in cool-season turf may be limited to spring applications, but increased temperature enhances activity on all grasses.


1989 ◽  
Vol 69 (4) ◽  
pp. 1353-1357 ◽  
Author(s):  
J. L. EGGENS ◽  
C. P. M. WRIGHT ◽  
D. P. MURR ◽  
K. CAREY

Under pot culture and field conditions, ethephon at rates up to 8 kg ha−1 was more injurious to annual bluegrass than to Penncross creeping bentgrass. Ethephon significantly decreased the quality, spreading ability and shoot weight of annual bluegrass, whereas sward quality of the creeping bentgrass grown in pot culture was increased, spreading ability was unaffected and shoot dry weight decreased. Increasing the number of applications at all concentrations increased injury to annual bluegrass and a single application at 1 kg ha−1 reduced annual bluegrass seedhead production.Key words: Poa annua, Agrostis palustris, ethephon, sward quality


HortScience ◽  
2001 ◽  
Vol 36 (4) ◽  
pp. 784-786 ◽  
Author(s):  
Xia Xu ◽  
Charles F. Mancino

Annual bluegrass (Poa annua L.) is becoming an important component of golf course putting greens. A greenhouse sand culture experiment was conducted to study the zinc (Zn) requirements of three genotypes of flowering annual bluegrass (FAB) and three genotypes of vegetative annual bluegrass (VAB), which were compared with the three parents of `Penncross' creeping bentgrass [Agrostis stolonifera L. (CB)]. Clonally propagated plants were grown in sand culture without Zn for 6 weeks prior to the initiation of the Zn treatments. The plants were then irrigated for 3 weeks with half-strength Hoagland's nutrient solution containing 0, 2.5, 5.0, or 40 mg·L-1 Zn from ZnSO4. Color was the only parameter affected by genotype; each genotype showed a significant quadratic response to increasing levels of Zn, with highest color ratings occurring at 2.5 mg·L-1. No genotypic differences were observed among CB, VAB, and FAB for shoot fresh and dry weight, root dry weight, or shoot tissue Zn concentrations. Shoot dry weight of all genotypes increased quadratically with Zn levels. Root dry weights of both VAB and FAB increased, while that of CB remained unchanged, as Zn level increased. Zinc concentrations in shoot tissue increased linearly as Zn level increased. Shoot Zn concentrations were higher in both VAB and FAB than in CB at each Zn level, but differences between VAB and FAB were insignificant. Maintaining shoot Zn concentrations below 109 mg·kg-1 in CB and 200 mg·kg-1 in VAB or FAB prevented Zn phytotoxicity from occurring.


1992 ◽  
Vol 6 (4) ◽  
pp. 852-857 ◽  
Author(s):  
J. Christopher Hall ◽  
C. Ken Carey

Effects of linuron on annual bluegrass control and Kentucky bluegrass cultivar tolerance were studied in field and growth chamber experiments. In controlled environment experiments, linuron at 0.06, 0.12, 0.25, 0.50, and 0.75 kg ai ha-1 was applied to pure stands of annual bluegrass and eight Kentucky bluegrass cultivars. Linuron at the two highest rates controlled annual bluegrass, reducing the clipping dry weight by more than 85% 4 wk after treatment, and by 65 to 92% 6 wk after treatment. Growth of Kentucky bluegrass was reduced with the most severe reduction occurring 2 wk after linuron application. All cultivars exhibited normal growth 8 wk after treatment. In field experiments, linuron at rates from 1.5 to 2.0 kg ai ha-1 controlled annual bluegrass in old (> 5 yr) Kentucky bluegrass stands, and in 16 cultivars of 1-yr and 2-yr-old Kentucky bluegrass stands, with little or no damage. At rates of 1.5, 2.0, and 2.5 kg ai ha-1 linuron, damage to newly seeded cultivars was moderate to severe. However, 6 to 7 wk after linuron application to newly seeded cultivars, stand density and turf quality were equivalent to untreated checks.


2004 ◽  
Vol 44 (1) ◽  
pp. 57 ◽  
Author(s):  
L. J. Latham ◽  
R. A. C. Jones ◽  
B. A. Coutts

Field experiments provided quantitative information on the yield losses caused by virus infection within 4 different combinations of non-persistently aphid-transmitted virus and cool-season crop legume: Alfalfa mosaic virus (AMV) in chickpea, faba bean and lentil, and Cucumber mosaic virus (CMV) in lentil. Virus infection foci were introduced into plots and naturally occurring aphids spread infection from these to the other plants. Plants were tagged individually when typical virus symptoms first appeared during the growing period. Paired plant comparisons between symptomatic and asymptomatic plants were made to measure different yield loss parameters. Late infection with AMV in faba bean cv. Fiord diminished shoot dry weight by 41% and seed yield by 45%, but plants infected earlier recovered sufficiently from their initial shock reaction not to produce significant yield losses. In plants of lentil cv. Matilda first showing symptoms at different times, infection with AMV decreased shoot dry weight by 74–76%, seed yield by 81–87% and individual seed weight by 10–21%, while CMV diminished shoot dry weight by 72–81%, seed yield by 80–90% and individual seed yield by 17–25%. Early infection with AMV killed plants of chickpea cv. Tyson while later infection decreased shoot dry weight by 50%, seed yield by 98% and individual seed weight by 90%. The first tentative evidence for seed transmission of AMV in faba bean is reported with a transmission rate of 0.04%.


Sign in / Sign up

Export Citation Format

Share Document