scholarly journals Annual Bluegrass and Creeping Bentgrass Response to Varying Levels of Iron

HortScience ◽  
2001 ◽  
Vol 36 (2) ◽  
pp. 371-373 ◽  
Author(s):  
Xia Xu ◽  
Charles F. Mancino

Many biotypes of annual bluegrass (Poa annua L.) are found on golf course putting greens. Although normally considered an invasive weed, annual bluegrass can provide as good a putting surface as creeping bentgrass (Agrostis palustris Huds.). The most desirable biotypes of annual bluegrass are primarily vegetative and have a low flowering frequency. Whether the nutritional requirements of annual bluegrass biotypes differ from one another or from creeping bentgrass is unknown. The response of three flowering (FAB, high seedhead production) and three vegetative (VAB, low seedhead production) biotypes of annual bluegrass (AB), and the three parents of `Penncross' creeping bentgrass (CB) to varying levels of iron (Fe) in greenhouse sand culture was investigated. After establishment, clones were grown for 3 weeks and irrigated with a half-strength Hoagland's solution containing 0, 2, 4, 6, and 8 mg·L-1 Fe in citrate-Fe. Shoot and root responses to Fe were similar for the VAB and FAB biotypes. However, VAB had higher color ratings (darker green leaf color) with Fe treatment level at 4 mg·L-1 than did FAB or CB, which required 6 mg·L-1 Fe for acceptable color. Growth of creeping bentgrass was greater than that of annual bluegrass at every Fe level tested. Shoot dry weights of CB increased significantly with Fe treatment level up to 6 mg·L-1. Shoot dry weight of AB increased up to 4 mg·L-1 Fe and then declined at ≥6 mg·L-1. Root growth of CB increased up to 6 mg·L-1 Fe, but then decreased significantly at 8 mg·L-1 Fe. Root growth of AB increased slightly up to 4 mg·L-1 Fe and then declined at 6 and 8 mg·L-1. Shoot tissue concentrations of Fe were similar for AB and CB at each Fe rate tested except at 8 mg·L-1 Fe, where Fe levels in CB were significantly lower. Based on this work, creeping bentgrass and annual bluegrass respond differently to Fe nutrition, but different biotypes of annual bluegrass appear to respond similarly.

HortScience ◽  
2001 ◽  
Vol 36 (4) ◽  
pp. 784-786 ◽  
Author(s):  
Xia Xu ◽  
Charles F. Mancino

Annual bluegrass (Poa annua L.) is becoming an important component of golf course putting greens. A greenhouse sand culture experiment was conducted to study the zinc (Zn) requirements of three genotypes of flowering annual bluegrass (FAB) and three genotypes of vegetative annual bluegrass (VAB), which were compared with the three parents of `Penncross' creeping bentgrass [Agrostis stolonifera L. (CB)]. Clonally propagated plants were grown in sand culture without Zn for 6 weeks prior to the initiation of the Zn treatments. The plants were then irrigated for 3 weeks with half-strength Hoagland's nutrient solution containing 0, 2.5, 5.0, or 40 mg·L-1 Zn from ZnSO4. Color was the only parameter affected by genotype; each genotype showed a significant quadratic response to increasing levels of Zn, with highest color ratings occurring at 2.5 mg·L-1. No genotypic differences were observed among CB, VAB, and FAB for shoot fresh and dry weight, root dry weight, or shoot tissue Zn concentrations. Shoot dry weight of all genotypes increased quadratically with Zn levels. Root dry weights of both VAB and FAB increased, while that of CB remained unchanged, as Zn level increased. Zinc concentrations in shoot tissue increased linearly as Zn level increased. Shoot Zn concentrations were higher in both VAB and FAB than in CB at each Zn level, but differences between VAB and FAB were insignificant. Maintaining shoot Zn concentrations below 109 mg·kg-1 in CB and 200 mg·kg-1 in VAB or FAB prevented Zn phytotoxicity from occurring.


1989 ◽  
Vol 69 (1) ◽  
pp. 297-304
Author(s):  
C. P. M. WRIGHT ◽  
J. L. EGGENS ◽  
K. CAREY ◽  
R. J. HINES

The objective of this study was to determine if total plant leaf numbers in a large data set could be predicted from individual plant shoot dry weight measurements using regression equations derived from a subset of the data. The species used were annual bluegrass (Poa annua L.) and creeping bentgrass (Agrostis palustris Huds. ’Penncross’). There was significant correlation between leaf number and shoot dry weight measurements in data subsets. Leaf numbers for the total data set were estimated by the regression equation derived from a subset consisting of pooled data from one, two or three replicates. This procedure was assessed by comparing predictions from regression equations with actual values, using a number of different sets of replicates to generate the regression equation. On the basis of the results we suggest that, for annual bluegrass and creeping bentgrass in greenhouse pot culture, this procedure can be used to accurately estimate leaf number data for remaining replicates within an experimental design, once regression coefficients are established from pooled data from two replicates.Key words: Leaf number estimation, shoot dry weight, annual bluegrass, creeping bentgrass


2006 ◽  
Vol 20 (4) ◽  
pp. 1015-1022 ◽  
Author(s):  
Darren W. Lycan ◽  
Stephen E. Hart

Response of creeping bentgrass, annual bluegrass, and Kentucky bluegrass to foliar, soil, or foliar plus soil applications of bispyribac-sodium was evaluated in greenhouse studies. Soil-alone and foliar plus soil applications of bispyribac-sodium at 148 or 296 g ai/ha resulted in greater injury and shoot dry weight reduction of all species 28 d after treatment (DAT) compared to foliar-alone treatments. Creeping bentgrass was less injured than annual or Kentucky bluegrass regardless of application placement. Further studies evaluated foliar and root absorption and translocation of14C-bispyribac-sodium in creeping bentgrass, annual bluegrass, Kentucky bluegrass, and roughtstalk bluegrass. Foliar absorption into creeping bentgrass was less than that of other species at most harvest timings from 4 to 72 h after treatment. Annual and roughstalk bluegrass translocated greater amounts of foliar-absorbed14C to the crown and shoots compared to creeping bentgrass. Annual and roughstalk bluegrass accumulated approximately 47% more14C per dry weight of plant tissue than creeping bentgrass and 74% more than Kentucky bluegrass after 72 h in nutrient solution containing14C-bispyribac-sodium. Annual and roughstalk bluegrass translocated approximately 80% of root-absorbed14C to shoots, whereas creeping bentgrass and Kentucky bluegrass translocated slightly less (66% of absorbed for both species). These studies suggest that bispyribac-sodium is readily absorbed by roots and translocated to shoots which may contribute to its total activity within a plant. In addition, creeping bentgrass displayed lower amounts of foliar and root absorption and subsequent translocation than annual and roughstalk bluegrass which may contribute to greater bispyribac-sodium tolerance displayed by creeping bentgrass.


1989 ◽  
Vol 69 (4) ◽  
pp. 1353-1357 ◽  
Author(s):  
J. L. EGGENS ◽  
C. P. M. WRIGHT ◽  
D. P. MURR ◽  
K. CAREY

Under pot culture and field conditions, ethephon at rates up to 8 kg ha−1 was more injurious to annual bluegrass than to Penncross creeping bentgrass. Ethephon significantly decreased the quality, spreading ability and shoot weight of annual bluegrass, whereas sward quality of the creeping bentgrass grown in pot culture was increased, spreading ability was unaffected and shoot dry weight decreased. Increasing the number of applications at all concentrations increased injury to annual bluegrass and a single application at 1 kg ha−1 reduced annual bluegrass seedhead production.Key words: Poa annua, Agrostis palustris, ethephon, sward quality


2014 ◽  
Vol 28 (3) ◽  
pp. 501-509 ◽  
Author(s):  
Nicholas R. Hoisington ◽  
Michael L. Flessner ◽  
Marco Schiavon ◽  
J. Scott McElroy ◽  
James H. Baird

Methiozolin is a new herbicide from South Korea currently under development in the United States for PRE and POST annual bluegrass control in bentgrass and most other cool- and warm-season turfgrasses. Greenhouse studies were conducted in 2012 at the University of California, Riverside, CA, and Auburn University, Auburn, AL, to evaluate the relative tolerance of three bentgrass species comprised of nine creeping bentgrass (CRBG) cultivars, velvet bentgrass (VBG) and colonial bentgrass (COBG) to methiozolin at 0, 0.6, 1.1, 2.2, 4.5 and 9.0 kg ai ha−1. Methiozolin was applied 7 wk after seeding, followed by a second application 5 wk later. Methiozolin rates that produced 25% injury (TI25) and 50% clipping dry weight reduction (GR50) relative to a nontreated control for each species or cultivar were calculated using four-parameter logistic regression. Turf injury rates at 21 d after second treatment (DAT2) were the most consistent in describing relative tolerance among bentgrass species. Overall, CRBG was more tolerant to methiozolin than VBG or COBG. After two applications, methiozolin rates that caused TI25 were 1.1, 0.2, and 0.3 kg ha−1 for CRBG (across all cultivars), VBG, and COBG, respectively. VBG and COBG were not tolerant of sequential methiozolin applications at rates necessary to control annual bluegrass under field conditions. Herbicide rates that caused TI25 and GR50 decreased with the second application. ‘Penn A-4’ CRBG exhibited the highest TI25 28 d after initial treatment (DAIT) at University of California at Riverside (4.5 kg ha−1), but only 2.5 kg ha−1 with two applications by 21 DAT2. All CRBG cultivars tested tolerated methiozolin at 0.5 kg ha−1, the recommended sequential use rate for putting greens in Korea.


2015 ◽  
Vol 33 (3) ◽  
pp. 137-141
Author(s):  
Bruce R. Roberts ◽  
Chris Wolverton ◽  
Samantha West

The efficacy of treating soilless substrate with a commercial humectant was tested as a means of suppressing drought stress in 4-week-old container-grown Zinnia elegans Jacq. ‘Thumbelina’. The humectant was applied as a substrate amendment at concentrations of 0.0, 0.8, 1.6 and 3.2% by volume prior to withholding irrigation. An untreated, well-watered control was also included. The substrate of treated plants was allowed to dry until the foliage wilted, at which time the plants were harvested and the following measurements taken: number of days to wilt (DTW), xylem water potential (ψx), shoot growth (shoot dry weight, leaf area) and root growth (length, diameter, surface area, volume, dry weight). For drought-stressed plants grown in humectant-treated substrate at concentrations of 1.6 and 3.2%, DTW increased 25 and 33%, respectively. A linear decrease in ψx was observed as the concentration of humectant increased from 0.0 to 3.2%. Linear trends were also noted for both volumetric moisture content (positive) and evapotranspiration (negative) as the concentration of humectant increased. For non-irrigated, untreated plants, stress inhibited shoot growth more than root growth, resulting in a lower root:shoot ratio. For non-irrigated, humectant-treated plants, the length of fine, water-absorbing roots increased linearly as humectant concentration increased from 0.0 to 3.2%. Using humectant-amended substrates may be a management option for mitigating the symptoms of drought stress during the production of container-grown bedding plants such as Z. elegans.


1991 ◽  
Vol 5 (4) ◽  
pp. 805-810 ◽  
Author(s):  
Michael J. Horak ◽  
Loyd M. Wax

Growth and development of bigroot morningglory was observed and quantified. Emergence occurred 75 ± 5 growing degree days (GDD) after seeding. Flower and seed production began 630 ± 20 GDD after emergence and continued until the first frost killed the shoots. Seedlings needed approximately 460 GDD of growth to become perennial. In the second year of growth, plants emerged in early May and flowered within 425 ± 50 GDD. Shoot dry weight accumulation in first-year plants was 3.5 g for the first 600 GDD after which a fifteenfold increase in dry weight occurred. Root growth followed the same pattern, however the large increase in dry weight occurred approximately 300 GDD later than that of the shoots. The root:shoot ratio was 0.2 to 0.3 for the first 900 GDD and increased to greater than 1.0 by the final harvest.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Dario X. Ramirez-Villacis ◽  
Omri M. Finkel ◽  
Isai Salas-González ◽  
Connor R. Fitzpatrick ◽  
Jeffery L. Dangl ◽  
...  

ABSTRACT Glyphosate is a commonly used herbicide with a broad action spectrum. However, at sublethal doses, glyphosate can induce plant growth, a phenomenon known as hormesis. Most glyphosate hormesis studies have been performed under microbe-free or reduced-microbial-diversity conditions; only a few were performed in open systems or agricultural fields, which include a higher diversity of soil microorganisms. Here, we investigated how microbes affect the hormesis induced by low doses of glyphosate. To this end, we used Arabidopsis thaliana and a well-characterized synthetic bacterial community of 185 strains (SynCom) that mimics the root-associated microbiome of Arabidopsis. We found that a dose of 3.6 × 10−6 g acid equivalent/liter (low dose of glyphosate, or LDG) produced an ∼14% increase in the shoot dry weight (i.e., hormesis) of uninoculated plants. Unexpectedly, in plants inoculated with the SynCom, LDG reduced shoot dry weight by ∼17%. We found that LDG enriched two Firmicutes and two Burkholderia strains in the roots. These specific strains are known to act as root growth inhibitors (RGI) in monoassociation assays. We tested the link between RGI and shoot dry weight reduction in LDG by assembling a new synthetic community lacking RGI strains. Dropping RGI strains out of the community restored growth induction by LDG. Finally, we showed that individual RGI strains from a few specific phyla were sufficient to switch the response to LDG from growth promotion to growth inhibition. Our results indicate that glyphosate hormesis was completely dependent on the root microbiome composition, specifically on the presence of root growth inhibitor strains. IMPORTANCE Since the introduction of glyphosate-resistant crops, glyphosate has become the most common and widely used herbicide around the world. Due to its intensive use and ability to bind to soil particles, it can be found at low concentrations in the environment. The effect of these remnants of glyphosate in plants has not been broadly studied; however, glyphosate 1,000 to 100,000 times less concentrated than the recommended field dose promoted growth in several species in laboratory and greenhouse experiments. However, this effect is rarely observed in agricultural fields, where complex communities of microbes have a central role in the way plants respond to external cues. Our study reveals how root-associated bacteria modulate the responses of Arabidopsis to low doses of glyphosate, shifting between growth promotion and growth inhibition.


2003 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
James C. Stiegler ◽  
Gregory E. Bell ◽  
Dennis L. Martin

2009 ◽  
Vol 23 (3) ◽  
pp. 425-430 ◽  
Author(s):  
Patrick E. McCullough ◽  
Stephen E. Hart

Bispyribac-sodium is an efficacious herbicide for annual bluegrass control in creeping bentgrass fairways, but turf tolerance and growth inhibition may be exacerbated by low mowing heights on putting greens. We conducted field and greenhouse experiments to investigate creeping bentgrass putting green tolerance to bispyribac-sodium. In greenhouse experiments, creeping bentgrass discoloration from bispyribac-sodium was exacerbated by reductions in mowing height from 24 to 3 mm, but mowing height did not influence clipping yields or root weight. In field experiments, discoloration of creeping bentgrass putting greens was greatest from applications of 37 g/ha every 10 d, compared to 74, 111, or 222 g/ha applied less frequently. Chelated iron effectively reduced discoloration of creeping bentgrass putting greens from bispyribac-sodium while trinexapac-ethyl inconsistently reduced these effects. Overall, creeping bentgrass putting greens appear more sensitive to bispyribac-sodium than higher mowed turf, but chelated iron and trinexapac-ethyl could reduce discoloration.


Sign in / Sign up

Export Citation Format

Share Document