Rimsulfuron for Postemergence Weed Control in Corn in Humid Tropical Environments of Nigeria

2007 ◽  
Vol 21 (4) ◽  
pp. 977-981 ◽  
Author(s):  
David Chikoye ◽  
Udensi E. Udensi ◽  
A. Fontem Lum ◽  
Friday Ekeleme

Cogongrass and guineagrass are serious perennial weeds in small-scale farms in lowland subhumid zones of West Africa. Field studies were conducted in 2002 and 2003 at two sites in Ibadan, Nigeria [Ijaye and the International Institute of Tropical Agriculture (IITA)], to evaluate the effect of rimsulfuron on weed communities dominated by cogongrass and guineagrass in corn. At both sites, treatments were rimsulfuron dosages of 0 (nontreated control), 10, 20, 30, 40, 50, 60, 70, and 80 g ai/ha. Rimsulfuron did not cause any visible phytotoxicity on the corn at any dosage at either site. There was a rapid increase in weed control as the dosage of rimsulfuron increased from 0 to 20 g/ha. Weed control was not improved at rates higher than 20 g/ha. Rimsulfuron was very effective against sedges,Ipomoea involucrata, Bengal dayflower, gulf leafflower, old-world diamond-flower, and wild jute providing more than 80% control at dosages between 10 and 20 g/ha at Ijaye. Rimsulfuron was less effective for cogongrass, with a maximum of only 38% control observed. At IITA, the herbicide was very effective against guineagrass, Bengal dayflower, nodeweed, coat buttons, redfruit passionflower, and waterleaf; all of which were controlled more than 70% with any rate of rimsulfuron. Regression analysis showed that the dosage of rimsulfuron required to reduce shoot dry biomass by 70% was 5 g/ha for guineagrass and 35 g/ha for cogongrass at 3 wk after treatment (WAT). At crop maturity, the dosage of rimsulfuron required to reduce shoot dry biomass by 70% was 43 g/ha for guineagrass and 200 g/ha for cogongrass. The dry biomass of cogongrass and guineagrass was higher at crop harvest than at 2 WAT regardless of herbicide dosage. Corn grain yield was 1.8 times higher at IITA than at Ijaye. At both sites, corn grain yield increased with increased herbicide dosage. Maximum corn grain yields were obtained at a rimsulfuron dosage of 20 g/ha.

1997 ◽  
Vol 11 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Eric Spandl ◽  
Thomas L. Rabaey ◽  
James J. Kells ◽  
R. Gordon Harvey

Optimal application timing for dicamba–acetamide tank mixes was examined in field studies conducted in Michigan and Wisconsin from 1993 to 1995. Dicamba was tank mixed with alachlor, metolachlor, or SAN 582H and applied at planting, 7 d after planting, and 14 d after planting. Additional dicamba plus alachlor tank mixes applied at all three timings were followed by nicosulfuron postemergence to determine the effects of noncontrolled grass weeds on corn yield. Delaying application of dicamba–acetamide tank mixes until 14 d after planting often resulted in lower and less consistent giant foxtail control compared with applications at planting or 7 d after planting. Corn grain yield was reduced at one site where giant foxtail control was lower when application was delayed until 14 d after planting. Common lambsquarters control was excellent with 7 or 14 d after planting applications. At one site, common lambsquarters control and corn yield was reduced by application at planting. Dicamba–alachlor tank mixes applied 7 d after planting provided similar weed control or corn yield, while at planting and 14 d after planting applications provided less consistent weed control or corn yield than a sequential alachlor plus dicamba treatment or an atrazine-based program.


2006 ◽  
Vol 20 (3) ◽  
pp. 640-645 ◽  
Author(s):  
Ehsan Bijanzadeh ◽  
Hossein Ghadiri

Field studies were conducted at Shiraz, Iran, during 2000 and 2001 to investigate the effect of separate and combined herbicide treatments on weed control and corn yield. Separate and combined herbicide treatments included 14 combinations applied at two rates. Herbicides reduced weed biomass compared with the weedy check. In both years, maximum reduction in weed biomass was observed with atrazine plus alachlor at 1 + 2.44 and 1.5 + 1.92 kg ai/ha and minimum reduction in weed biomass was observed with rimsulfuron at 0.02 and 0.04 kg/ha. In 2000 and 2001, 2,4-D plus MCPA at 0.36 + 0.31 and 0.54 + 0.46 kg/ha, and alachlor plus 2,4-D plus MCPA at 1.92 + 0.54 + 0.46 kg/ha, and 2.44 + 0.36 + 0.31 kg/ha, controlled 80 to 100% of field bindweed and rimsulfuron at 0.02 and 0.04 kg/ha controlled 17 to 70% of field bindweed. All herbicide treatments controlled redroot pigweed 60 to 100%. In 2000, at 6 and 17 WAP, minimum biomass reduction of Chinese-lantern-plant was observed with 2,4-D plus MCPA at 0.36 + 0.31 and 0.54 + 0.46 kg/ha, and primisulfuron plus prosulfuron at 0.02 + 0.02 and 0.03 + 0.03 kg/ha. Rimsulfuron plus primisulfuron plus prosulfuron at 0.02 + 0.03 + 0.03 and 0.04 + 0.02 + 0.02 kg/ha reduced johnsongrass biomass 96 to 100% and the efficacy of rimsulfuron increased when tank mixed with primisulfuron plus prosulfuron. Results of both years showed that all herbicide treatments increased corn grain yield as compared with the weedy check. Maximum corn grain yield was obtained with combinations of atrazine plus alachlor at 1 + 2.44 and 1.5 + 1.92 kg/ha.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Alexandra M. Knight ◽  
Wesley J. Everman ◽  
David L. Jordan ◽  
Ronnie W. Heiniger ◽  
T. Jot Smyth

Adequate fertility combined with effective weed management is important in maximizing corn (Zea mays L.) grain yield. Corn uptake of nitrogen (N) is dependent upon many factors including weed species and density and the rate and formulation of applied N fertilizer. Understanding interactions among corn, applied N, and weeds is important in developing management strategies. Field studies were conducted in North Carolina to compare corn and weed responses to urea ammonium nitrate (UAN), sulfur-coated urea (SCU), and composted poultry litter (CPL) when a mixture of Palmer amaranth (Amaranthus palmeri S. Wats.) and large crabgrass (Digitaria sanguinalis L.) was removed with herbicides at heights of 8 or 16 cm. These respective removal timings corresponded with 22 and 28 days after corn planting or V2 and V3 stages of growth, respectively. Differences in N content in above-ground biomass of corn were noted early in the season due to weed interference but did not translate into differences in corn grain yield. Interactions of N source and N rate were noted for corn grain yield but these factors did not interact with timing of weed control. These results underscore that timely implementation of control tactics regardless of N fertility management is important to protect corn grain yield.


2012 ◽  
Vol 26 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Laura E. Lindsey ◽  
Wesley J. Everman ◽  
Andrew J. Chomas ◽  
James J. Kells

Field studies were conducted from 2007 to 2009 in East Lansing, MI to evaluate three residual herbicide programs, three POST herbicide application timings, and two POST herbicides in glyphosate- and glufosinate-resistant corn. Herbicide programs included a residual PRE-applied herbicide followed by (fb) POST application (residual fb POST), a residual herbicide tank-mixed with a POST herbicide (residual + POST), and a nonresidual POST. Three POST herbicide application timings included early POST (EP), mid-POST (MP), and late POST (LP) at an average corn growth stage of V3/V4, V4/V5, and V5/V6, respectively. The two POST herbicides evaluated were glyphosate and glufosinate. Control of common lambsquarters and giant foxtail was evaluated 28 d after the LP application. Glyphosate often provided greater weed control than glufosinate. The LP application resulted in greater giant foxtail control compared with the EP application timing, which may be attributed to control of late-emerging weeds. The EP application timing improved common lambsquarters control compared with the LP application timing. The residual + POST program resulted in greater weed control compared with the residual fb POST program in all years. The effect of residual herbicide program, POST herbicide, and POST application timing on corn grain yield varied by year. In 2007, the use of glyphosate resulted in higher grain yield compared with glufosinate. In 2008, corn grain yield was the highest in the PRE fb POST program and with POST applications at EP and MP. To provide the most consistent weed control and minimize the likelihood of grain yield reductions, a PRE fb POST program applied at EP or MP is recommended.


2010 ◽  
Vol 28 (1) ◽  
pp. 103-111 ◽  
Author(s):  
M.S. Lima ◽  
P.S.L. Silva ◽  
O.F. Oliveira ◽  
K.M.B. Silva ◽  
F.C.L. Freitas

The interference imposed the by weeds on corn decreases practically all vegetative characteristics. As consequence, the green ear and grain yield are also reduced. Losses due to the fall armyworm (Spodoptera frugiperda) attack can reduce corn grain yield up to 34%. In general, weed and insect control issues are addressed separately in research papers. Nevertheless, interaction between weeds and insects may exist. This study aimed to evaluate green ear and corn grain yield response to weed and fall armyworm control. A completely randomized block design with split-plots and five replicates was adopted. Corn cultivar AG 1051 was grown under weedy conditions or with control by hand hoeings performed at 20 and 40 days after planting. Fall armyworm control (applied to subplots) was performed with sprays of water (control), deltamethrin (5g active ingredient ha-1); neem oil, at 0.5% (diluted in water), and neem leaf extract at 5%. Each product was sprayed three times, at seven-day intervals, starting at the 7th day after planting, using 150 L ha-1 of the tank solution. Dry mass of the above-ground part, internode diameter, leaf length, leaf width, leaf area, green ear yield and grain yield of corn were reduced due to the lack of weed control. Fall armyworm control in the weeded plots did not influence green ear yield and grain yield, except green mass of marketable, husked ears, which was reduced when the caterpillar was not controlled. Without weed control, neem extracts and deltamethrin sprays provided highest yields of number and total weight of green ears with husks, number and weight of marketable ears with husks and number of marketable ears without husks. The best results for husked ear mass and for grain yield were obtained with neem extract and deltamethrin, respectively.


Weed Science ◽  
1986 ◽  
Vol 34 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Jon P. Chernicky ◽  
Fred W. Slife

Field studies were conducted to measure the response of corn (Zea maysL. var. ‘Pioneer 3377’) to foliar applications of sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one}, fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy] propanoic acid}, and haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy] propanoic acid} as influenced by corn growth stage and the addition of 7.7, 15,4, 77.7, 140, 280, and 840 g/ai/ha of bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. Applications of sethoxydim (16.8, 33.6, 67.2, 100, and 134 g ai/ha), fluazifop, or haloxyfop (1.0, 2.0, 4.0, 8.0, 10.0, and 13.4 g ai/ha) to four- to five-leaf corn did not reduce seed weight, but significant reductions resulted when sethoxydim (100 g/ha) or fluazifop (13.4 g/ha) was applied to 70- to 80-cm (six-leaf) corn with or without bentazon. Corn grain yield was significantly reduced by sethoxydim (>67.2 g/ha) treatment at either growth stage of corn. In contrast, corn injury induced by fluazifop (>8.0 g/ha) and haloxyfop (13.4 g/ha) resulted in reductions in yield only when applications were made to 70- to 80-cm corn. Significant reductions in seed germination also resulted from foliar applications of the graminicides, but these reductions were inconsistent across corn growth stage.


1994 ◽  
Vol 8 (4) ◽  
pp. 696-702 ◽  
Author(s):  
George Kapusta ◽  
Ronald F. Krausz ◽  
Mustajab Khan ◽  
Joseph L. Matthews

Field experiments were conducted in 1988 and 1989 to (i) evaluate annual weed control with nicosulfuron applied at rates of 17 to 70 g ai/ha with several additives and (ii) evaluate annual weed control with nicosulfuron applied at rates of 17 to 105 g/ha at three corn growth stages. In 1988, in the adjuvant study, giant foxtail control increased linearly with no additive or with urea ammonium nitrate as the rate of nicosulfuron increased. Petroleum oil concentrate, nonionic surfactant, and a combination of either petroleum oil concentrate or nonionic surfactant with urea ammonium nitrate applied with nicosulfuron increased giant foxtail control to 90% or greater regardless of rate both years. Nicosulfuron at all rates with no additive and in combination with all additives controlled 93% or more of redroot pigweed and Pennsylvania smartweed both years. Corn grain yield was related to the level of giant foxtail control. In the rate by corn growth stage study, giant foxtail, redroot pigweed, and Pennsylvania smartweed control was 90% or greater regardless of nicosulfuron rate or application stage both years. Corn grain yield was related more to the duration of weed competition than the level of weed control with grain yield 8 to 12% lower with nicosulfuron applied at the V7 growth stage compared with the V3 or V5 growth stage.


Weed Science ◽  
1989 ◽  
Vol 37 (4) ◽  
pp. 600-603 ◽  
Author(s):  
Jon P. Chernicky ◽  
Roger Gast ◽  
Fred W. Slife

Corn and giant foxtail response to foliar-applied sethoxydim at 67, 134, and 200 g ai/ha was evaluated in field studies. Sethoxydim applied over the top of corn (60 cm tall) caused greater whorl damage and reduced corn grain yield more than postdirected sethoxydim. Sethoxydim controlled giant foxtail best when used in conjunction with a preemergence application of metolachlor (2.2 kg/ha) and atrazine (1.7 kg/ha).


Weed Science ◽  
1996 ◽  
Vol 44 (4) ◽  
pp. 903-910
Author(s):  
Gail A. Wicks ◽  
Robert G. Wilson ◽  
Garold W. Mahnken ◽  
Gordon E. Hanson

Field studies were conducted to determine the influence of annual herbicide treatments plus cultivation on weed populations and corn yields in ridge-till corn during a 3-yr period at Mitchell, NE, and a 7-yr period at North Platte, NE. When the experiment was initiated at North Platte, no weeds were present before corn planting. It took 4 yr before triazine-resistant kochia became a problem before corn planting in plots treated with atrazine, but these were controlled by other operations prior to corn harvest. In the cultivated check, green foxtail densities before harvest increased from 0 in 1985 to 32 plants 100 m−2in 1991. Annual applications of dicamba plus 2,4-D 10 d early preplant followed by cultivation controlled triazine-resistant kochia and velvetleaf, but common lambsquarters, nightshade species, and green foxtail increased. Volunteer corn was controlled with cultivation. After 3 yr at Mitchell, the annual weed population increased 10-fold in the cultivated check. Thus, corn yields were reduced 64% with two cultivations compared with an annual early preplant application of dicamba plus 2,4-D followed by alachlor plus cyanazine PRE and two cultivations. With two cultivations under low annual weed populations at North Platte, grain yield from the cultivated check treatment was not different from annual treatments of herbicides after 7 yr. Metolachlor plus atrazine occasionally caused a reduction in corn grain yields.


1997 ◽  
Vol 11 (3) ◽  
pp. 537-542 ◽  
Author(s):  
Thomas L. Rabaey ◽  
R. Gordon Harvey

Field studies were conducted in 1994 and 1995 to determine the contribution of PRE applications of alachlor, metolachlor, acetochlor, SAN 582H, or pendimethalin on woolly cupgrass and wild-proso millet control when followed by POST nicosulfuron at 0, 0.018, 0.027, or 0.036 kg ai/ha. Sequential treatments controlled woolly cupgrass and wild-proso millet greater than single applications of PRE herbicides, which when applied alone resulted in the least wild-proso millet control and lowest corn grain yield. Lack of complete woolly cupgrass control with POST nicosulfuron alone resulted in corn grain yield that was less than with sequential treatments but was equal to PRE treatments. Wild-proso millet control with nicosulfuron at 0.027 kg/ha resulted in corn grain yield that was less than with sequential treatments, but greater than with all PRE treatments except for SAN 582H. All PRE herbicides, regardless of early season performance, when followed by nicosulfuron resulted in woolly cupgrass and wild-proso millet control that was similar. Woolly cupgrass seed production compared to the nontreated check was reduced 98% with acetochlor followed by nicosulfuron. Sequential treatments provided the most consistent woolly cupgrass and wild-proso millet control, the highest corn grain yield, and the greatest reduction in woolly cupgrass and wild-proso millet seed production.


Sign in / Sign up

Export Citation Format

Share Document