COMPUTATIONAL NEAR-FIELD RADIATIVE TRANSFER AND NF-RT-FDTD ALGORITHM

2020 ◽  
Vol 23 ◽  
pp. 59-93
Author(s):  
Azadeh Didari ◽  
M. Pinar Menguc
Author(s):  
Arvind Narayanaswamy ◽  
Sheng Shen ◽  
Gang Chen

Thermal radiative transfer between objects as well as near-field forces such as van der Waals or Casimir forces have their origins in the fluctuations of the electrodynamic field. Near-field radiative transfer between two objects can be enhanced by a few order of magnitude compared to the far-field radiative transfer that can be described by Planck’s theory of blackbody radiation and Kirchoff’s laws. Despite this common origin, experimental techniques of measuring near-field forces (using the surface force apparatus and the atomic force microscope) are more sophisticated than techniques of measuring near-field radiative transfer. In this work, we present an ultra-sensitive experimental technique of measuring near-field using a bi-material atomic force microscope cantilever as the thermal sensor. Just as measurements of near-field forces results in a “force distance curve”, measurement of near-field radiative transfer results in a “heat transfer-distance” curve. Results from the measurement of near-field radiative transfer will be presented.


Author(s):  
Braden Czapla ◽  
Yi Zheng ◽  
Karthik Sasihithlu ◽  
Arvind Narayanaswamy

Near-field effects in radiative transfer refer to the collective influence of interference, diffraction, and tunneling of electro-magnetic waves on energy transfer between two or more objects. Most studies of near-field radiative transfer have so far focused on the enhancement due to tunneling of surface polaritons. In this work, we show the existence of sharp peaks in the radiative transfer spectrum between two spheres of polar materials that are not due to surface polaritons. The peaks, which are present on either side of the restrahlen band, are because of Mie resonances.


Author(s):  
Azadeh Didari ◽  
Elif Begüm Elçioğlu ◽  
Tuba Okutucu-Özyurt ◽  
M. Pinar Mengüç

Author(s):  
Arvind Narayanaswamy

Near–field force and energy exchange between two objects due to electrodynamic fluctuations give rise to dispersion forces such as Casimir and van der Waals forces, and thermal radiative transfer exceeding Plancks theory of blackbody radiation. The two phenomena dispersion forces and near–field enhancement of thermal radiation have common origins in the electromagnetic fluctuations. However, dispersion forces have contributions from quantum (zero–point) as well as thermal fluctuations whereas nearfield radiative transfer has contributions from thermal fluctuations alone. The forces are manifested through the Maxwell stress tensor of the electromagnetic field and radiative transfer through the Poynling vector. Both phenomena are elegantly described in terms of the Dyadic Greens function of the vector Helmholtz equation that governs the electromagnetic fields. In this talk, I will focus on the application of the Dyadic Greens function technique to near–field radiative transfer and dispersion forces. Despite the similarities, radiative transfer and forces have important differences that will be stressed on. I will end the talk with some open questions about the Dyadic Greens function formalism and its application to near–field radiative transfer.


Author(s):  
Arvind Narayanaswamy ◽  
Sheng Shen ◽  
Gang Chen

Nearfield radiative transfer is known to be significantly different from that of far-field radiative transfer based on Plancks theory of blackbody radiation. Theoretical predictions point to a significant enhancement of radiative transfer between closely spaced objects due to the tunneling of surface phonon polaritons. Despite extensive theoretical predictions of enhancement between parallel surfaces, experimental evidence of near-field radiative transfer in excess of Plancks limit has been elusive due to experimental difficulties. In this talk, we will present results of our theoretical and experimental investigations into near-field radiative transfer between spherical surfaces. We have developed a sensitive technique of measuring nearfield radiative transfer between a microsphere and a substrate using a bimaterial atomic force microscope (AFM) cantilever, resulting in heat transfer-distance curves. Measurements of radiative transfer between a sphere and a flat substrate show the presence of strong nearfield effects resulting in enhancement of heat transfer over the predictions of the Planck blackbody radiation theory.


2005 ◽  
Vol 127 (9) ◽  
pp. 1046-1052 ◽  
Author(s):  
C. J. Fu ◽  
Z. M. Zhang ◽  
D. B. Tanner

The phenomenon of photon tunneling, which depends on evanescent waves for radiative transfer, has important applications in microscale energy conversion devices and near-field optical microscopy. In recent years, there has been a surge of interest in the so-called negative index materials (NIMs), which have simultaneously negative electric permittivity and negative magnetic permeability. The present work investigates photon tunneling in multilayer structures consisting of positive index materials (PIMs) and NIMs. Some features, such as the enhancement of radiative transfer by the excitation of surface polaritons for both polarizations, are observed in the predicted transmittance spectra. The influence of the number of layers on the transmittance is also examined. The results suggest that the enhanced tunneling transmittance by polaritons also depends on the NIM layer thickness and that subdividing the PIM/NIM layers to enhance polariton coupling can reduce the effect of material loss on the tunneling transmittance.


Sign in / Sign up

Export Citation Format

Share Document