TRANSPORT PHENOMENA IN THE IMPACT OF A MOLTEN DROPLET ON A SURFACE: MACROSCOPIC PHENOMENOLOGY AND MICROSCOPIC CONSIDERATIONS PART I: FLUID DYNAMICS

2000 ◽  
Vol 11 (11) ◽  
pp. 65-144 ◽  
Author(s):  
S. Haferl ◽  
D. Attinger ◽  
Z. Zhao ◽  
J. Giannakouros ◽  
Dimos Poulikakos
Author(s):  
Praween Senanayake ◽  
Hana Salati ◽  
Eugene Wong ◽  
Kimberley Bradshaw ◽  
Yidan Shang ◽  
...  

2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


2021 ◽  
Author(s):  
Sanaz Dianat

The research paper investigates the impact of a window’s exterior air film on the assembly temperature. The exterior air film constitutes a vital portion of a window’s insulating values. The air film increases the temperature of the window exterior pane to a temperature above ambient temperature. The air film also rises the interior glass temperature and reduces the heat transfer from the interior surface. According to computational fluid dynamics (CFD), the air film is removed in windy conditions, decreasing the window temperature on the outside as well as on the inside. The idea behind the project is to carry out an experimental procedure on three different windows to validate the CFD results, which indicates the effect of various wind speeds. Keyword: Exterior air film, computational fluid dynamics, window assembly, wind speed


Author(s):  
Stefan Schmideder ◽  
Christoph Kirse ◽  
Julia Hofinger ◽  
Sascha Rollié ◽  
Heiko Briesen

Bioprocesses for the production of renewable energies and materials lack efficient separation processes for the utilized microorganisms such as algae and yeasts. Dissolved air flotation (DAF) and microflotation are promising approaches to overcome this problem. The efficiency of these processes depends on the ability of microorganisms to aggregate with microbubbles in the flotation tank. In this study, different new or adapted aggregation models for microbubbles and microorganisms are compared and investigated for their range of suitability to predict the separation efficiency of microorganisms from fermentation broths. The complexity of the heteroaggregation models range from an algebraic model to a 2D population balance model (PBM) including the formation of clusters containing several bubbles and microorganisms. The effect of bubble and cell size distributions on the flotation efficiency is considered by applying PBMs, as well. To determine the impact of the model assumptions, the modeling approaches are compared and classified for their range of applicability. Evaluating computational fluid dynamics (CFD) of a DAF system shows the heterogeneity of the fluid dynamics in the flotation tank. Since analysis of the streamlines of the tank show negligible backmixing, the proposed aggregation models are coupled to the CFD data by applying a Lagrangian approach.


2014 ◽  
Vol 317 ◽  
pp. 526-533 ◽  
Author(s):  
Y.Z. Zheng ◽  
Q. Li ◽  
Z.H. Zheng ◽  
J.F. Zhu ◽  
P.L. Cao

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Andrea Acuna ◽  
Alycia G. Berman ◽  
Frederick W. Damen ◽  
Brett A. Meyers ◽  
Amelia R. Adelsperger ◽  
...  

Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.


Author(s):  
S. W. Cha ◽  
S. J. Lee ◽  
Y. I. Park ◽  
F. B. Prinz

This paper presents a study on the transport phenomena related to gas flow through fuel cell micro-channels, specifically the impact of dimensional scale on the order of 100 microns and below. Especially critical is the ability to experimentally verify model predictions, and this is made efficiently possible by the use of structural photopolymer (SU-8) to directly fabricate functional fuel cell micro-channels. The design and analysis components of this investigation apply 3-D multi-physics modeling to predict cell performance under micro-channel conditions. Interestingly, the model predicts that very small channels (specifically 100 microns and below) result in a significantly higher peak power density than larger counterparts. SU-8 micro-channels with different feature sizes have been integrated into fuel cell prototypes and tested for comparison against model predictions. The results not only demonstrate that the SU-8 channels with metal current collector show quite appreciable performance, but also provide experimental verification of the merits of channel miniaturization. As predicted, the performance in terms of peak power density increases as the feature size of the channel decreases, even though the pressure drop is higher in the more narrow channels. So it has been observed both theoretically and experimentally that cell performance shows an improving trend with micro-channels, and design optimization for miniature fuel cell provides a powerful method for increasing power density.


Sign in / Sign up

Export Citation Format

Share Document