fermentation broths
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 24)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 111 ◽  
pp. 241-249
Author(s):  
Xueqi Shi ◽  
Haixiong Liu ◽  
Aqiang Chu ◽  
Meng Yang ◽  
Jing Fang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6268
Author(s):  
Karolina Kucharska ◽  
Patrycja Makoś-Chełstowska ◽  
Edyta Słupek ◽  
Jacek Gębicki

Lignocellulose and starch-based raw materials are often applied in the investigations regarding biohydrogen generation using dark fermentation. Management of the arising post-fermentation broth becomes a problem. The Authors proposed sequential processes, to improve the efficiency of both hydrogen generation and by-products management carried under model conditions. During the proposed procedure, the simple sugars remaining in broth are converted into organic acids, and when these products are used as substrates for the photo fermentation process. To enhance the broth management also conditions promoting Deep Eutectic Solvents (DES) precursors synthesis are simultaneously applied. Application of Box-Behnken design allows defining of the optimal conditions for conversion to DESs precursors. During the procedure hydrogen was obtained, the concentration of hydrogen in the photo fermentation reached up to 819 mL H2/L medium/7 d, depending on the broth type, i.e., when the broth was optimized for formic acid concentration. The DESs precursors were separated and engaged in DESs synthesis. To confirm the formation of the DESs, FT-IR analyses were performed. The Chemical Oxygen Demand of post-fermentation broths after dark fermentation optimized for formic acid was reduced by ca. 82%. The proposed procedure can be successfully used as a method of post-fermentation broth management.


Author(s):  
Sören Bernauer ◽  
Mathias Schöpf ◽  
Johannes Khinast ◽  
Timo Hardiman

The power input and gas-liquid mass transfer rank among the most important industrial fermentation process parameters. The present study analyzes the power input and gas hold-up as a function of the flow regime, impeller diameter, and rheological properties in a pilot scale reactor (160 L) equipped with four Rushton impellers. This leads to four dimensionless numbers for predicting measurements in pilot and industrial bioreactors (110 and 170 m3) with a standard deviation of 7 % to 29 %. This is unparalleled for the underlying aerated and non-Newtonian fermentation broths. Several existing correlation equations are discussed to be dissatisfying (up to 130 % deviation), and might be sufficiently valid only within scale or for small scaling factors. The introduced approach predicts adequately accurate over three orders of magnitude. Based on these encouraging results, we identified the Galilei number and the power concept as the central elements in combination with the consequent dimensional analysis for an efficient scaling betweeen pilot and industrial scale.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 105
Author(s):  
Catherine R. Back ◽  
Henry L. Stennett ◽  
Sam E. Williams ◽  
Luoyi Wang ◽  
Jorge Ojeda Gomez ◽  
...  

To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential.


2021 ◽  
pp. 2000765
Author(s):  
Melanie Jablonski ◽  
Felix Münstermann ◽  
Jasmina Nork ◽  
Denise Molinnus ◽  
Lukas Muschallik ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Oslery Becerra-Pérez ◽  
Stavros Georgopoulos ◽  
Maria Lanara ◽  
Hilda Elizabeth Reynel-Ávila ◽  
Maria Papadaki ◽  
...  

The separation of ethanol, propanol, and butanol from aqueous solutions was studied using adsorption on bone char. Adsorption kinetics and thermodynamic parameters of this separation method were studied at different conditions of pH and temperature. Results showed that the maximum adsorption capacities of these bioalcohols were obtained at pH 6 and 20°C. An exothermic separation was identified, which can be mainly associated to hydrophobic interactions between bone char surface and bioalcohols. Binary adsorption studies were also performed using mixtures of these bioalcohols. An antagonistic adsorption was observed for all bioalcohols where the ethanol and propanol separation was significantly affected by butanol. A model based on an artificial neural network was proposed to correlate both single and binary adsorption isotherms of these bioalcohols with bone char. It was concluded that the bone char could be an interesting adsorbent for the sustainable separation and recovery of bioalcohols from fermentation broths, which are actually considered emerging liquid biofuels and relevant industrial chemicals.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Wirginia Tomczak ◽  
Marek Gryta

In recent years, microfiltration (MF) has gained great interest as an excellent technique for clarification of biological suspensions. This paper addresses a direct comparison of efficiency, performance and susceptibility to cleaning of the ceramic and polymeric MF membranes applied for purification of 1,3-propanediol (1,3-PD) fermentation broths and suspensions of yeast Saccharomyces cerevisiae. For this purpose, ceramic, titanium dioxide (TiO2) based membranes and polypropylene (PP) membranes were used. It has been found that both TiO2 and PP membranes provide sterile permeate during filtration of 1,3-PD broths. However, the ceramic membrane, due to the smaller pore diameter, allowed obtaining a better quality permeate. All the membranes used were highly susceptible to fouling with the components of the clarified broths and yeast suspensions. The significant impact of the feed flow velocity and fermentation broth composition on the relative permeate flux has been demonstrated. Suitable cleaning agents with selected concentration and duration of action effectively cleaned the ceramic membrane. In turn, the use of aggressive cleaning solutions led to degradation of the PP membranes matrix. Findings of this study add to a growing body of literature on the use of ceramic and polypropylene MF membranes for the clarification of biological suspensions.


2020 ◽  
Vol 6 (4) ◽  
pp. 375
Author(s):  
Juliana Lebeau ◽  
Thomas Petit ◽  
Mireille Fouillaud ◽  
Laurent Dufossé ◽  
Yanis Caro

Demand for microbial colorants is now becoming a competitive research topic for food, cosmetics and pharmaceutics industries. In most applications, the pigments of interest such as polyketide-based red pigments from fungal submerged cultures are extracted by conventional liquid–liquid extraction methods requiring large volumes of various organic solvents and time. To address this question from a different angle, we proposed, here, to investigate the use of three different aqueous two-phase extraction systems using either ammonium- or imidazolium-based ionic liquids. We applied these to four fermentation broths of Talaromyces albobiverticillius (deep red pigment producer), Emericella purpurea (red pigment producer), Paecilomyces marquandii (yellow pigment producer) and Trichoderma harzianum (yellow-brown pigment producer) to investigate their selective extraction abilities towards the detection of polyketide-based pigments. Our findings led us to conclude that (i) these alternative extraction systems using ionic liquids as greener extractant means worked well for this extraction of colored molecules from the fermentation broths of the filamentous fungi investigated here; (ii) tetrabutylammonium bromide, [N4444]Br-, showed the best pigment extraction ability, with a higher putative affinity for azaphilone red pigments; (iii) the back extraction and recovery of the fungal pigments from ionic liquid phases remained the limiting point of the method under our selected conditions for potential industrial applications. Nevertheless, these alternative extraction procedures appeared to be promising ways for the detection of polyketide-based colorants in the submerged cultures of filamentous fungi.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 319 ◽  
Author(s):  
Wirginia Tomczak ◽  
Marek Gryta

This work examined the use of a ceramic fine ultrafiltration (UF) membrane for the pre-treatment of 1,3-propanodiol (1,3-PD) fermentation broths. It has been demonstrated that the membrane used provides obtaining a high-quality, sterile permeate, which can be sequentially separated by other processes such as nanofiltration (NF) and membrane distillation (MD). Special attention was paid to the impact of the operational parameters on the membrane performance. The series of UF experiments under transmembrane pressure (TMP) from 0.1 to 0.4 MPa and feed flow rate (Q) from 200 to 400 dm3/h were performed. Moreover, the impact of the feed pH, in the range from 5 to 10, on the flux was investigated. It has been demonstrated that for fine UF, increasing the TMP is beneficial, and TMP equal to 0.4 MPa and Q of 400 dm3/h ensure the highest flux and its long-term stability. It has been shown that in terms of process efficiency, the most favorable pH of the broths is equal to 9.4. An effective and simple method of membrane cleaning was presented. Finally, the resistance-in-series model was applied to describe resistances that cause flux decline. Results obtained in this study can assist in improving the cost-effectiveness of the UF process of 1,3-PD fermentation broths.


Sign in / Sign up

Export Citation Format

Share Document