EXPERIMENTAL STUDY ON SPRAY AND MIXTURE PROPERTIES OF THE GROUP-HOLE NOZZLE FOR DIRECT-INJECTION DIESEL ENGINES, PART I: A COMPARATIVE ANALYSIS WITH THE SINGLE-HOLE NOZZLE

2009 ◽  
Vol 19 (4) ◽  
pp. 321-337 ◽  
Author(s):  
Jian Gao ◽  
Yuhei Matsumoto ◽  
Keiya Nishida
2018 ◽  
Vol 234 ◽  
pp. 03007
Author(s):  
Plamen Punov ◽  
Tsvetomir Gechev ◽  
Svetoslav Mihalkov ◽  
Pierre Podevin ◽  
Dalibor Barta

The pilot injection strategy is a widely used approach for reducing the noise of the combustion process in direct injection diesel engines. In the last generation of automotive diesel engines up to several pilot injections could occur to better control the rate of heat release (ROHR) in the cylinder as well as the pollutant formation. However, determination of the timing and duration for each pilot injection needs to be precisely optimised. In this paper an experimental study of the pilot injection strategy was conducted on a direct injection diesel engine. Single and double pilot injection strategy was studied. The engine rated power is 100 kW at 4000 rpm while the rated torque is 320 Nm at 2000 rpm. An engine operating point determined by the rotation speed of 1400 rpm and torque of 100 Nm was chosen. The pilot and pre-injection timing was widely varied in order to study the influence on the combustion process as well as on the fuel consumption.


Author(s):  
Narendra Narayanaswamy ◽  
Chaman Ramesh ◽  
N. Bharath ◽  
P. Bharath Reddy ◽  
Deeptha Sabarish

Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


Author(s):  
Cédric Lopez ◽  
François Malburet ◽  
André Barraco

This paper studies problematic of a mechanical system composed of different coupled parts submitted to a high speed shock and proposes analysis of anti vibratory passive and active methods based on an experimental and theoretical coupled approach. After a shock, different parts of the system oscillate. If one of them is excited at a particular frequency, such as its proper frequency, important oscillations appear and can lead to the deterioration of the system by introducing important stresses. In this paper, we propose an analysis in order to understand this kind of problem and what we can do to avoid it. Firstly, we discuss problematic and we expose the studied system. In a second time, we develop two approaches of modeling that allow us to understand the phenomenon by carrying out numerical simulations. Then cross checking of model is completed via experimental study on drop test bench. Passive minimization method of vibrations based on experimental and theoretical coupled approach is exposed. Finally, a comparative analysis of different methods of control and experimental results of controlled system are presented.


2009 ◽  
Vol 20 (9) ◽  
pp. 095109 ◽  
Author(s):  
J V Pastor ◽  
J M García-Oliver ◽  
J M Pastor ◽  
J G Ramírez-Hernández

1989 ◽  
Author(s):  
Manabu Furubayashi ◽  
Eiichi Teramoto ◽  
Saburo Kase ◽  
Isao Konagaya ◽  
Kenichi Ueda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document