ATOMIZATION CHARACTERISTICS OF AIRBLAST FUEL INJECTION INSIDE A VENTURI TUBE

1997 ◽  
Vol 7 (3) ◽  
pp. 245-265 ◽  
Author(s):  
H. Sun ◽  
T.-H. Chue ◽  
R. R. Tacina
Author(s):  
Brian T. Reese ◽  
Yann G. Guezennec ◽  
Miodrag Oljaca

A novel fuel atomization device (Nanomiser™) was evaluated under laboratory conditions with respect to its ability to reduce SI engine cold-start hydrocarbon emissions. First, comparisons between the level of atomization using the conventional, pintle-type fuel injector and the novel atomizer were carried out using flow visualization in a spray chamber and particle size distribution. The novel atomizer is capable of producing sub-micron fuel droplets, which form an ultra-fine mist with outstanding non-wetting characteristics. To capitalize on these atomization characteristics, this device was compared to a conventional fuel injector in a small, two-cylinder, SI engine under a number of operating conditions. Results show a slightly enhanced combustion quality and lean limit under warm operating conditions and a dramatic reduction in unburned HC emission under cold operating conditions, with cold emissions with the Nanomiser™ matching those with a conventional injector under fully warm conditions.


2019 ◽  
Author(s):  
Aizam Shahroni Mohd Arshad

In this study, we investigated the atomization characteristics of rapid internal mixing injector (RIM injector) developed in our laboratory. RIM injector successfully emulsifies base fuel without any surfactant just before fuel injection. The diameter of droplet discharged from RIM injector was evaluated based on processing of shadowgraph images. It was found that Sauter mean diameter (SMD) of droplet is determined by the gas to liquid ratio (GLR) and viscosity of emulsified fuel. The increasing GLR decreases SMD value. As water content ratio is increased, the inner structure of droplet changes to W/O type emulsion. The emulsification increases its viscosity, which deteriorates the atomization characteristics. We proposed an empirical formula as functions of GLR and Reynolds number reproducing the deterioration resulting from increasing viscosity. The formula successfully predicts the SMD variation with respect to GLR and water content ratio. Finally, we examined the effect of atomization air ratio on NOx and PM emissions. The quantity of atomization air significantly influences the PM emission because the increasing air improves the mixing of fuel vapor with combustion air.


1994 ◽  
Vol 4 (4) ◽  
pp. 451-471 ◽  
Author(s):  
Nobuyuki Yatsuyanagi ◽  
Hiroshi Sakamoto ◽  
Kazuo Sato

2011 ◽  
Vol 21 (1) ◽  
pp. 1-16
Author(s):  
Vital Gutierrez Fernandez ◽  
G. Lavergne ◽  
P. Berthoumieu

Sign in / Sign up

Export Citation Format

Share Document