THE IMPORTANCE OF HEAT TRANSFER TO IC ENGINE DESIGN AND OPERATION

Author(s):  
R. Pischinger
Author(s):  
Nan Jiang ◽  
Terrence W. Simon

The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.


2014 ◽  
Author(s):  
Terry Yan ◽  
Jason Yobby ◽  
Ravindra Vundavilli

The analysis for optimal design of an air-cooled internal combustion engine cooling fin array by using genetic algorithms (GA) is presented in this study. Genetic Algorithms are robust, stochastic search techniques which are also used for optimizing highly complex problems. In this study, the fin array is of the traditional circular fin type, which is subject to ambient convective heat transfer. The parameters (degrees of freedom) selected for the analysis include the cylinder wall thickness-to-radius ratio, fin thickness, fin length, the number of fins, and the local heat transfer coefficient. By using a single objective GA procedure, the heat transfer through the fin arrays is set as the objective function to be optimized with each parameter varied within the physical ranges. Proper population size is selected and the mutations, cross-over and selection are conducted in the GA procedure to arrive at the optimal set of parameters after a certain number of generations. The GA proves to be an effective optimization method in the thermal system component designs when the number of independent variables is large.


Author(s):  
A. Andreini ◽  
G. Caciolli ◽  
R. Da Soghe ◽  
B. Facchini ◽  
L. Mazzei

Film cooling represents one the most widely-used cooling techniques for hot gas path components. In particular, effusion cooling has recently become an important focus of attention in the context of aero-engine design due to its high cooling performance. Notwithstanding the huge amount of work dedicated to the heat transfer on the hot side of effusion cooling plates, it has been demonstrated that up to 30 % of the total cooling effectiveness of a typical effusion cooling configuration can be ascribed to cold side convective cooling. Nevertheless, in open literature it is possible to notice a lack of knowledge as far as this topic is concerned. This paper describes a numerical activity aimed at investigating the phenomenology of the heat transfer at the entrance of film cooling holes. First of all the accuracy of the numerical approach has been validated through a comparison of enhancement factor measurements on a test case available in literature. Steady state RANS simulations have been performed, modeling turbulence by means of the k–ω SST model. The use of a transition model has been taken into account, since in these configurations the transitional behavior of the boundary layer has been highlighted in literature. Subsequently, the attention has been turned to the comprehension of the phenomena involved in the heat transfer augmentation, focusing the attention to the influence of fluid dynamic parameters such as suction ratio and Reynolds number. A good agreement has been highlighted with experimental data, therefore this work provides a starting point for future investigations on more representative configurations.


2007 ◽  
Vol 52 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Egel Urip ◽  
Ka Heng Liew ◽  
S. L. Yang

2017 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Balbheem Kamanna ◽  
Bibin Jose ◽  
Ajay Shamrao Shedage ◽  
Sagar Ganpat Ambekar ◽  
Rajesh Somnath Shinde ◽  
...  

The piston is considered as most important part of I.C engine. High temperature produced in an I.C engine may contribute to high thermal stresses. Without appropriate heat transfer mechanism, the piston crown would operate ineffectively which reduce life cycle of piston and hence mechanical efficiency of engine. The literature survey shows that ideal piston consumes heat produced by burnt gases resulting in decrease of Engine overall Efficiency. In this project work an attempt is made to redesign piston crown using TBC on piston surface and to study its Performance. A 150 cc engine is considered and TBC material with different thickness is coated on the piston. 3D modeling of the piston geometry is done 3D designing software Solidworks2015. Finite Element analysis is used to calculate temperature and heat flux distribution on piston crown. The result shows TBC as a coating on piston crown surface reduces the heat transfer rate within the piston and that will results in increase of engine efficiency. Results also show that temperature and heat flux decreases with increase in coating thickness of YSZ.


2003 ◽  
Vol 125 (3) ◽  
pp. 513-520 ◽  
Author(s):  
Kam S. Chana ◽  
Terry V. Jones

Detailed experimental investigations have been performed to measure the heat transfer and static pressure distributions on the rotor tip and rotor casing of a gas turbine stage with a shroudless rotor blade. The turbine stage was a modern high pressure Rolls-Royce aero-engine design with stage pressure ratio of 3.2 and nozzle guide vane (ngv) Reynolds number of 2.54E6. Measurements have been taken with and without inlet temperature distortion to the stage. The measurements were taken in the QinetiQ Isentropic Light Piston Facility and aerodynamic and heat transfer measurements are presented from the rotor tip and casing region. A simple two-dimensional model is presented to estimate the heat transfer rate to the rotor tip and casing region as a function of Reynolds number along the gap.


Author(s):  
Sohail Alizadeh ◽  
Barrie Moss

In the increasingly congested accessory zones of gas turbine engine casings, it is important that the several temperature-sensitive components, like the electronic engine control unit (EEC), are bathed in an appropriate ventilation environment. Additionally it must be ensured that heat sources, like the geometrically complex gear box components, furthest from the inflows do not sit in stagnant zones. In this paper CFD methods have been used to study in detail the ventilation and heat transfer environment of one particular zone — that of the fan casing in the engine nacelle of a high by-pass turbofan. A particular challenge was the appropriate modelling of the extensive pipe systems that existed in this environment, ensuring that their impact on the flow field and heat transfer was suitably taken into account. Whilst in past practice large components and ducts have been modelled in CFD studies, the small scale pipe systems and electrical harnesses do not lend themselves easily to explicit modelling strategies. In this work a methodology is presented whereby the effects of all small scale pipe systems within the zone are represented using a sub-grid modelling approach. The momentum drag and heat release associated with all small scale pipes have been modelled and their impact on the ventilation and heat transfer characteristics of the accessory zone environment assessed. Comparisons made with the explicit methodology, not employing sub-grid models, have revealed that the small scale pipe systems have a significant impact on the flow and heat distribution, particularly around the EEC. Finally, limited comparisons with similar test rig flow visualisation data have been made, confirming the overall flow pattern within the zone. The work also suggests approaches in which the sub-grid methodology may be extended and verified for engine design purposes.


Sign in / Sign up

Export Citation Format

Share Document