Thermal Barrier Coating on IC Engine Piston to Improve Engine Efficiency

2017 ◽  
Vol 9 (1) ◽  
pp. 47 ◽  
Author(s):  
Balbheem Kamanna ◽  
Bibin Jose ◽  
Ajay Shamrao Shedage ◽  
Sagar Ganpat Ambekar ◽  
Rajesh Somnath Shinde ◽  
...  

The piston is considered as most important part of I.C engine. High temperature produced in an I.C engine may contribute to high thermal stresses. Without appropriate heat transfer mechanism, the piston crown would operate ineffectively which reduce life cycle of piston and hence mechanical efficiency of engine. The literature survey shows that ideal piston consumes heat produced by burnt gases resulting in decrease of Engine overall Efficiency. In this project work an attempt is made to redesign piston crown using TBC on piston surface and to study its Performance. A 150 cc engine is considered and TBC material with different thickness is coated on the piston. 3D modeling of the piston geometry is done 3D designing software Solidworks2015. Finite Element analysis is used to calculate temperature and heat flux distribution on piston crown. The result shows TBC as a coating on piston crown surface reduces the heat transfer rate within the piston and that will results in increase of engine efficiency. Results also show that temperature and heat flux decreases with increase in coating thickness of YSZ.

2013 ◽  
Vol 393 ◽  
pp. 281-286 ◽  
Author(s):  
Helmisyah Ahmad Jalaludin ◽  
Shahrir Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Bulan Abdullah ◽  
Nik Rosli Abdullah

Due to high temperature and less proper heat transfer, the material of piston crown in an engine of compressed natural gas with a direct injection system (CNGDI) may lead to high thermal stresses and fails to withstand high temperature and operate effectively. By insulating with thermal barrier coating (TBC) such as ceramic-based yttria partially stabilised zirconia (YPSZ), heat transfer to the piston might be reduced and lead to improvement of piston durability. Hence, in this research, YPSZ coating was utilised to differentiate with the uncoated piston crowns in terms of the ability to reduce thermal penetration to the piston. A detailed finite element analysis (FEA) was carried out to determine the location of hotspots via profiles distribution of thermal. In short, it was observed that hotspots were mainly concentrated at the piston bowls rim. The heat flux for the YPSZ/NiCrAl-coated from FEA exhibited about 98% reduction compared to the uncoated piston crown.


2011 ◽  
Vol 52-54 ◽  
pp. 1830-1835 ◽  
Author(s):  
A.J. Helmisyah ◽  
Shahrir Abdullah ◽  
Mariyam Jameelah Ghazali

The top land of a piston normally known as the piston crown is an engine part that is continuously exposed to extreme temperature and pressure during combustion. For a compression ratio level, the compressed natural gas with a direct injection system (CNGDI) typically uses a range of compression ratio between gasoline and diesel engines, producing extremely high temperature and pressure which lead to high thermal stresses. Consequently, the piston crown is exposed to direct combustion due to the vertical movement of the piston, leading to various possible damages of thermal stresses. In contrast to a petrol fuelled internal combustion engine, natural gas combustion creates a dry condition in the combustion chamber, inducing cooling difficulties in the engine. Without good heat transfer, the piston crown materials will soon fail to withstand high temperature and operate effectively. Alternatively, any sort of insulation inside the combustion chamber such as applying ceramic coatings may protect the piston crown surface and affect the overall combustion process, as well as improving the engine performance and the exhaust emissions. By reducing the heat loss of a cylinder bore, a higher thermal efficiency of an engine can also be improved by applying a surface thermal insulation, namely; thermal barrier coating (TBC). Thus, in this study, a ceramic based TBC, yttria partially stabilised zirconia (YPSZ) coating was used to compare with conventional tin coated (Na2SnO3) and uncoated piston crown in terms of heat concentration. Moreover, a set of average value of combustion temperature of a CNGDI engine was selected. Detailed analyses using a finite element analysis (FEA) technique was utilised in order to determine the location of hotspots via distribution profiles of temperature. It was noted that the maximum heat flux of the uncoated piston crown was much higher than that of tin coated and YPSZ coated piston crown. Heat flux value reached about 62% of decrement due to lower conductivity levels of piston crown.


2014 ◽  
Vol 663 ◽  
pp. 304-310
Author(s):  
Ahmad Jalaludin Helmisyah ◽  
Shahrir Abdullah ◽  
Mariyam Jameelah Ghazali

Compressed natural gas with direct injection (CNGDI) engine produces high temperature and pressure ultimately leading to high thermal stress. The piston crown material fails to withstand high temperature and operate ineffectively due to improper heat transfer. By insulating the surface namely; thermal barrier coating (TBC) such as ceramic based yttria partially stabilised zirconia (YPSZ), heat transfer to the piston might be reduced and lead to improvement of piston durability. Hence, in this research, YPSZ/NiCrAl coating was utilised to differentiate with the uncoated piston crowns in terms of the ability to reduce thermal stresses to the piston using finite element method and burner rig test. Several samples of AC8A aluminium alloy piston crowns were coated with bonding element of NiCrAl and ZrO2-7.5Y2O3namely the YPSZ as the top coat by using air-plasma spraying technique and were assessed by burner rig test. The results exhibited the durability of the YPSZ/NiCrAl coating could withstand the test and the heat flux for the YPSZ/NiCrAl-coated piston crown was about 98% reduction compared to the uncoated piston crown. Also, the lower the gradient value of the heat flux, the higher the heat resistance.


Kerntechnik ◽  
2021 ◽  
Vol 86 (5) ◽  
pp. 338-342
Author(s):  
R. David

Abstract During the in-vessel stage of a severe accident in a CANDU 6 reactor, decay heat from a collapsed core would be rejected through the calandria walls into the surrounding water. At the step in the calandria wall, the subshell and annular plate meet at a right angle pointing into the calandria. The geometry at this joint could concentrate the exiting heat flux, potentially leading to calandria failure. Finite element analysis is used to study the heat transfer near the welded joint. Different weld profiles, boundary conditions, and decay heat characteristics are considered, and the local concentration of exiting heat flux is calculated.


Author(s):  
Ron-Ho Ni ◽  
William Humber ◽  
George Fan ◽  
John P. Clark ◽  
Richard J. Anthony ◽  
...  

Conjugate heat transfer analysis was conducted on a 648 hole film cooled turbine vane using Code Leo and compared to experimental results obtained at the Air Force Research Laboratory Turbine Research Facility. An unstructured mesh with fully resolved film holes for both fluid and solid domains was used to conduct the conjugate heat transfer simulation on a desktop PC with eight cores. Initial heat flux and surface metal temperature predictions showed reasonable agreement with heat flux measurements but under prediction of surface metal temperature values. Root cause analysis was performed, leading to two refinements. First, a thermal barrier coating layer was introduced into the analysis to account for the insulating properties of the Kapton layer used for the heat flux gauges. Second, inlet boundary conditions were updated to more accurately reflect rig measurement conditions. The resulting surface metal temperature predictions showed excellent agreement relative to measured results (+/− 5 degrees K).


Author(s):  
Tanweer Alam ◽  
Rakesh Kumar

Heat transfer analysis is the one of the most important designing aspects for many engineering systems. The design prospect in the preview of heat transfer focuses on the prediction of heat flux with the help of measured transient temperature data. Thin film gauges are one of the most predominant method for the heat flux prediction especially for short duration transient temperature measurement. Thin film gauges are usually exposed to the heated environment for the measurement purpose. However, there are some prominent research areas like ablation phenomenon met to spacecraft thermal shields during re-entry to the atmosphere, for which direct exposure of the thin film gauge to the heated environment causes the functional and working difficulties associated with the gauge. In the present study, it is aimed to investigate the suitability of thin film gauge for the conduction-based short duration measurement. An experimental set up is fabricated, which is used to supply the heat load to the hand-made thin film gauge using platinum as sensing element and quartz as a substrate. The transient temperature data is recorded during experiment is further compared with the simulated temperature histories obtained through finite element analysis. The heat flux estimation for both the analysis is made using measured transient temperature data by convolute integral of one- dimensional heat conduction equation. The estimated heat flux value for the experimental and numerical result is found to be in excellent agreement.


Author(s):  
D R Buttsworth

The transient response of an erodable ribbon element heat flux gauge has been assessed using a two-dimensional finite element (FE) analysis. Such transient heat flux gauges have previously been used for measurements in internal combustion (IC) engines. To identify the heat flux from the measurements of surface temperature, it is commonly assumed that the heat transfer within these devices is one-dimensional. A corollary of the one-dimensional treatment is that only one value of the thermal product, , is needed for identification of the transient heat flux, even though erodable heat flux gauges are constructed from at least two different materials. The current results demonstrate that two-dimensional transient heat conduction effects have a significant influence on the surface temperature measurements made with these devices. For the ribbon element gauge and timescales of interest in IC engine studies, using a one-dimensional analysis (and hence a single value of ) will lead to substantial inaccuracy in the derived heat flux measurements.


2007 ◽  
Vol 336-338 ◽  
pp. 1818-1822
Author(s):  
Jin Sheng Xiao ◽  
Kun Liu ◽  
Wen Hua Zhao ◽  
Wei Biao Fu

A thermal shock experiment is designed to explore the thermal shock properties of ceramic/metal gradient thermal barrier coating. The specimens are heated up by oxygen-acetylene flame and cooled by water spray. The experiment procedure includes two stages, heating the specimen from the initial temperature 30°C for 40s, and then cooling for 20s. The heat transfer and the associated thermal stresses produced during the thermal shock procedure are simulated by finite element method. Experimental results indicated that the specimen of gradient coating behaves better in thermal shock experiments, which agree with the results of simulation.


Author(s):  
Adhir Tandon

Modern Automobiles expect a high performance from its engines, which in turn places its requirements on the piston and cylinder components. Hence the piston has to deal with harsher, and tougher thermal and mechanical conditions. It has to undergo higher operating temperatures and pressures as well as higher speeds and at the same time keeping a check on the emissions. Pistons play a key role in increasing engine efficiency by reducing weight and frictional losses. This has made it essential to devise and search unique and creative concepts and materials for Pistons repeatedly, which offers what the engine demands. In this work Aluminium Alloy-4032 has been selected as the piston material of a 4-Stroke Diesel Engine and the piston rings are made of grey cast iron and alloy steel. Piston is designed by analytical methods taking both thermal and structural effects into consideration, then modelled on CATIA V5 and the analysis of structural deformation due to thermal stresses has been done using Finite Element Analysis of Steady State Thermal and its effect on static structure using Analysis software ANSYS


Sign in / Sign up

Export Citation Format

Share Document