ENTROPY GENERATION ANALYSIS DUE TO HEAT AND MASS TRANSFER WITHIN A CHANNEL

Author(s):  
Abir Sakly ◽  
Akram Mazgar ◽  
Faycal Ben Nejma
2018 ◽  
Vol 49 (8) ◽  
pp. 747-760 ◽  
Author(s):  
Muhammad Mubashir Bhatti ◽  
M. Ali Abbas ◽  
M. M. Rashidi

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yu Bai ◽  
Huiling Fang ◽  
Yan Zhang

Purpose This paper aims to present the effect of entropy generation on the unsteady flow of upper-convected Maxwell nanofluid past a wedge embedded in a porous medium in view of buoyancy force. Cattaneo-Christov double diffusion theory simulates the processes of energy phenomenon and mass transfer. Meanwhile, Brownian motion, thermophoresis and convective boundary conditions are discussed to further visualize the heat and mass transfer properties. Design/methodology/approach Coupled ordinary differential equations are gained by appropriate similar transformations and these equations are manipulated by the Homotopy analysis method. Findings The result is viewed that velocity distribution is a diminishing function with boosting the value of unsteadiness parameter. Moreover, fluid friction irreversibility is dominant as the enlargement in Brinkman number. Then controlling the temperature and concentration difference parameters can effectively regulate entropy generation. Originality/value This paper aims to address the effect of entropy generation on unsteady flow, heat and mass transfer of upper-convected Maxwell nanofluid over a stretched wedge with Cattaneo-Christov double diffusion, which provides a theoretical basis for manufacturing production.


Sign in / Sign up

Export Citation Format

Share Document