ANALYSIS OF TEMPERATURE SWING THERMAL INSULATION ON THE PERFORMANCE OF DIESEL ENGINES

2018 ◽  
Author(s):  
Arif Taibani ◽  
Shankar Krishnan ◽  
Milan Visaria
2019 ◽  
Vol 12 (2) ◽  
Author(s):  
Arif Taibani ◽  
Milan Visaria ◽  
Vikram Phalke ◽  
Alankar Alankar ◽  
Shankar Krishnan

2016 ◽  
Vol 9 (3) ◽  
pp. 1449-1459 ◽  
Author(s):  
Yoshifumi Wakisaka ◽  
Minaji Inayoshi ◽  
Kenji Fukui ◽  
Hidemasa Kosaka ◽  
Yoshihiro Hotta ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1155
Author(s):  
Keqin Zhao ◽  
Diming Lou ◽  
Yunhua Zhang ◽  
Liang Fang ◽  
Yuanzhi Tang

The thermal insulation performance of exhaust pipes coated with various materials (basalt and glass fiber materials) under different braiding forms (sleeve, winding and felt types) and the effects on the emission characteristics of diesel engines were experimentally studied through engine bench tests. The results indicated that the thermal insulation performance of basalt fiber was higher than that of glass fiber, and more notably advantageous at the early stage of the diesel engine idle cold phase. The average temperature drop during the first 600 s of the basalt felt (BF) pipe was 2.6 °C smaller than that of the glass fiber felt (GF) pipe. Comparing the different braiding forms, the temperature decrease in the felt-type braided material was 2.6 °C and 2.9 °C smaller than that in the sleeve- and winding-type braided materials, respectively. The basalt material was better than the glass fiber material regarding the gaseous pollutant emission reduction performance, especially in the idling cold phase of diesel engines. The NOx conversion rate of the BF pipe was 7.4% higher than that of the GF pipe, and the hydrocarbon (HC) conversion rate was 2.3% higher than that of the GF pipe, while the CO conversion rate during the first 100 s was 24.5% higher than that of the GF pipe. However, the particulate matter emissions were not notably different.


2019 ◽  
Vol 5 (3) ◽  
pp. 69-78
Author(s):  
V. V. Mozharovsky ◽  
◽  
D. S. Kuzmenkov ◽  
E. A. Golubeva ◽  
◽  
...  
Keyword(s):  

Author(s):  
Serhii Kovalov

The expediency of using vehicles of liquefied petroleum gas as a motor fuel, as com-pared with traditional liquid motor fuels, in particular with diesel fuel, is shown. The advantages of converting diesel engines into gas ICEs with forced ignition with respect to conversion into gas diesel engines are substantiated. The analysis of methods for reducing the compression ratio in diesel engines when converting them into gas ICEs with forced ignition has been carried out. It is shown that for converting diesel engines into gas ICEs with forced ignition, it is advisable to use the Otto thermo-dynamic cycle with a decrease in the geometric degree of compression. The choice is grounded and an open combustion chamber in the form of an inverted axisymmetric “truncated cone” is developed. The proposed shape of the combustion chamber of a gas internal combustion engine for operation in the LPG reduces the geometric compression ratio of D-120 and D-144 diesel engines with an unseparated spherical combustion chamber, which reduces the geometric compression ratio from ε = 16,5 to ε = 9,4. The developed form of the combustion chamber allows the new diesel pistons or diesel pistons which are in operation to be in operation to be refined, instead of making special new gas pistons and to reduce the geometric compression ratio of diesel engines only by increasing the combustion chamber volume in the piston. This method of reducing the geometric degree of compression using conventional lathes is the most technologically advanced and cheap, as well as the least time consuming. Keywords: self-propelled chassis SSh-2540, wheeled tractors, diesel engines D-120 and D-144, gas engine with forced ignition, liquefied petroleum gas (LPG), compression ratio of the internal com-bustion engine, vehicles operating in the LPG.


Sign in / Sign up

Export Citation Format

Share Document