UNSTEAD 3-D HEAT TRANSFER COMPUTATIONS IN ROTOR BLADE PASSAGES

Author(s):  
Ryo S. Amano ◽  
B. Lin
Keyword(s):  
2003 ◽  
Vol 125 (4) ◽  
pp. 648-657 ◽  
Author(s):  
Jae Su Kwak ◽  
Je-Chin Han

Experimental investigations were performed to measure the detailed heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade in a five-bladed linear cascade. The blade was a two-dimensional model of a first stage gas turbine rotor blade with a profile of the GE-E3 aircraft gas turbine engine rotor blade. The test blade had a squealer (recessed) tip with a 4.22% recess. The blade model was equipped with a single row of film cooling holes on the pressure side near the tip region and the tip surface along the camber line. Hue detection based transient liquid crystals technique was used to measure heat transfer coefficients and film cooling effectiveness. All measurements were done for the three tip gap clearances of 1.0%, 1.5%, and 2.5% of blade span at the two blowing ratios of 1.0 and 2.0. The Reynolds number based on cascade exit velocity and axial chord length was 1.1×106 and the total turning angle of the blade was 97.9 deg. The overall pressure ratio was 1.2 and the inlet and exit Mach numbers were 0.25 and 0.59, respectively. The turbulence intensity level at the cascade inlet was 9.7%. Results showed that the overall heat transfer coefficients increased with increasing tip gap clearance, but decreased with increasing blowing ratio. However, the overall film cooling effectiveness increased with increasing blowing ratio. Results also showed that the overall film cooling effectiveness increased but heat transfer coefficients decreased for the squealer tip when compared to the plane tip at the same tip gap clearance and blowing ratio conditions.


Author(s):  
Gm S. Azad ◽  
Je-Chin Han ◽  
Robert J. Boyle

Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modern first stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1×106. A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. The heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1% case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
A. de la Loma ◽  
G. Paniagua ◽  
D. Verrastro ◽  
P. Adami

This paper reports the external convective heat transfer distribution of a modern single-stage transonic turbine together with the physical interpretation of the different shock interaction mechanisms. The measurements have been performed in the compression tube test rig of the von Karman Institute using single- and double-layered thin film gauges. The three pressure ratios tested are representative of those encountered in actual aeroengines, with M2,is ranging from 1.07 to 1.25 and a Reynolds number of about 106. Three different rotor blade heights (15%, 50%, and 85%) and the stator blade at midspan have been investigated. The measurements highlight the destabilizing effect of the vane left-running shock on the rotor boundary layer. The stator unsteady heat transfer is dominated by the fluctuating right-running vane trailing edge shock at the blade passing frequency.


Author(s):  
Ibrahim Eryilmaz ◽  
Sinan Inanli ◽  
Baris Gumusel ◽  
Suha Toprak ◽  
Cengiz Camci

This paper presents the preliminary results of using artificial neural networks in the prediction of gas side convective heat transfer coefficients on a high pressure turbine blade. The artificial neural network approach which has three hidden layers was developed and trained by nine inputs and it generates one output. Input and output data were taken from an experimental research program performed at the von Karman Institute for Fluid Dynamics by Camci and Arts [5,6] and Camci [7]. Inlet total pressure, inlet total temperature, inlet turbulence intensity, inlet and exit Mach numbers, blade wall temperature, incidence angle, specific location of measurement and suction/pressure side specification of the blade were used as input parameters and calculated heat transfer coefficient around a rotor blade used as output. After the network is trained with experimental data, heat transfer coefficients are interpolated for similar experimental conditions and compared with both experimental measurements and CFD solutions. CFD analysis was carried out to validate the algorithm and to determine heat transfer coefficients for a closely related test case. Good agreement was obtained between CFD results and neural network predictions.


2000 ◽  
Vol 122 (4) ◽  
pp. 717-724 ◽  
Author(s):  
Gm. S. Azad ◽  
Je-Chin Han ◽  
Shuye Teng ◽  
Robert J. Boyle

Heat transfer coefficient and static pressure distributions are experimentally investigated on a gas turbine blade tip in a five-bladed stationary linear cascade. The blade is a two-dimensional model of a first-stage gas turbine rotor blade with a blade tip profile of a GE-E3 aircraft gas turbine engine rotor blade. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. The middle 3-blade has a variable tip gap clearance. All measurements are made at three different tip gap clearances of about 1, 1.5, and 2.5 percent of the blade span. Heat transfer measurements are also made at two different turbulence intensity levels of 6.1 and 9.7 percent at the cascade inlet. Static pressure measurements are made in the midspan and the near-tip regions as well as on the shroud surface, opposite the blade tip surface. Detailed heat transfer coefficient distributions on the plane tip surface are measured using a transient liquid crystal technique. Results show various regions of high and low heat transfer coefficient on the tip surface. Tip clearance has a significant influence on local tip heat transfer coefficient distribution. Heat transfer coefficient also increases about 15–20 percent along the leakage flow path at higher turbulence intensity level of 9.7 over 6.1 percent. [S0889-504X(00)00404-9]


Author(s):  
A. A. Ameri ◽  
E. Steinthorsson

The rate of heat transfer on the tip of a turbine rotor blade and on the blade surface in the vicinity of the tip, was successfully predicted. The computations were performed with a multiblock computer code which solves the Reynolds Averaged Navier-Stokes equations using an efficient multigrid method. The case considered for the present calculations was the SSME (Space Shuttle Main Engine) high pressure fuel side turbine. The predictions of the blade tip heat transfer agreed reasonably well with the experimental measurements using the present level of grid refinement. On the tip surface, regions with high rate of heat transfer was found to exist close to the pressure side and suction side edges. Enhancement of the heat transfer was also observed on the blade surface near the tip. Further comparison of the predictions was performed with results obtained from correlations based on fully developed channel flow.


Author(s):  
Lucilene Moraes da Silva ◽  
Jesuino Takachi Tomita ◽  
João Roberto Barbosa ◽  
Cleverson Bringhenti

In high performance turbomachines the tip region is a key point to improve aiming at high pressure ratios without high penalties. In the case of HPT, several techniques are still in development by academic research laboratories and industry. Some geometrical configurations were created at the rotor tip region, as winglets and squealers geometries. In the case of squealers, the depth of their cavity is an important parameter to evaluate, because its values can cause different flow behavior on this region. Changing the heat transfer. In this work, the rotor blade of a HPT developed in the E3 program was changed, the aim is to study the influence of the squealer cavity depth variation on its performance. The flow within the turbine was calculated using a commercial CFD package. The details of the rotor geometrical changes, the differences between a simple flat rotor tip surface and squealer configurations are discussed and presented.


Sign in / Sign up

Export Citation Format

Share Document