CORRELATION OF RADIANT TRANSFER COEFFICIENT WITH PACKED BED MICROSTRUCTURE IN THE ABSORBING SYSTEMS

Equipment ◽  
2006 ◽  
Author(s):  
Sh.-K. Lee ◽  
S. K. Chu ◽  
S. C.-H. Ip
2014 ◽  
Vol 908 ◽  
pp. 277-281
Author(s):  
Fei Wu ◽  
Jie Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Ping Lu

Based on acetone-H2O system, the influence of the gas-liquid distribution inducer on the mass transfer coefficient in the rotating packed bed with the stainless steel packing was investigated. Furthermore, the absorption performance was also obtained under the experimental condition of the rotational speed of 630 rpm, the gas flow rate of 2 m3/h and the liquid flow rate of 100 L/h in the rotating packed bed with different types and different installation ways of the distribution inducer. The experimental results showed that the volumetric mass transfer coefficient Kyα per unit contact length of gas-liquid was increased by 8.6% for the forward-curved fixed blade, by 19.8% for the backward-curved rotor blade and by 33.2% with the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. Furthermore, when the gas flow rate was 2.5 m3/h, Kyα per unit contact length of gas-liquid was increased by 2.9% for the forward-curved fixed blade, by 25.3% for the backward-curved rotor blade, by 42.7% for the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. The results indicated that the distribution inducer play an important role on the improvement of the mass transfer coefficient in acetone-H2O system.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Clifford K. Ho ◽  
Matthew Carlson ◽  
Kevin J. Albrecht ◽  
Zhiwen Ma ◽  
Sheldon Jeter ◽  
...  

This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO2 (sCO2) Brayton power cycle. The design requirements for high pressure (≥20 MPa) and high temperature (≥700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytic hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability, and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kWt shell-and-plate design was ultimately selected for construction and integration with Sandia's falling particle receiver system.


Author(s):  
David J. Geb ◽  
Ivan Catton

Non-intrusive measurements of the internal average heat transfer coefficient [1] in a randomly packed bed of spherical particles are made. It is desired to establish accurate results for this simple geometry so that the method used can then be extended to determine the heat transfer characteristics in any porous medium, such as a compact heat exchanger. Under steady, one-dimensional flow the spherical particles are subjected to a step change in volumetric heat generation rate via induction heating. The fluid temperature response is measured. The average heat transfer coefficient is determined by comparing the results of a numerical simulation based on volume averaging theory with the experimental results. More specifically, the average heat transfer coefficient is adjusted within the computational procedure until the predicted values of the fluid outlet temperature match the experimental values. The only information needed is the basic material properties, the flow rate, and the experimental data. The computational procedure alleviates the need for solid and fluid phase temperature measurements, which are difficult to make and can disturb the solid-fluid interaction. Moreover, a simple analysis allows us to proceed without knowledge of the heat generation rate, which is difficult to determine due to challenges associated with calibrating an inductively-coupled, sample specific, heat generation system. The average heat transfer coefficient was determined, and expressed in terms of the Nusselt number, over a Reynolds number range of 20–600. The results compared favorably to the work of Whitaker [2] and Kays and London [3]. The success of this method, in determining the average heat transfer coefficient in a randomly packed bed of spheres, suggests that it can be used to determine the average heat transfer coefficient in other porous media.


Author(s):  
Mohammad S. Saidi ◽  
Firooz Rasouli ◽  
Mohammad R. Hajaligol

Heat transfer coefficient of packed beds of shredded materials such as biomass fuels at low Peclet numbers is of interest. Due to the dependence of flow distribution on particle shape, the application of the Nusselt number correlation of packed bed of spherical particles overestimates the rate of heat transfer. This discrepancy is even more pronounced due to channeling effect at low Peclet numbers. Here, based on applying a pore submodel and combining the numerical simulation and experimental results of a cylindrical packed bed, a new correlation is derived for apparent Nusselt number of the packed bed of shredded materials. The correlation is approximated by a power law formulation for Pecelt < 25. The Nusselt number calculated from this correlation is in a good agreement with other experimental data.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
David Geb ◽  
Feng Zhou ◽  
Ivan Catton

Nonintrusive measurements of the internal heat transfer coefficient in the core of a randomly packed bed of uniform spherical particles are made. Under steady, fully-developed flow the spherical particles are subjected to a step-change in volumetric heat generation rate via induction heating. The fluid temperature response is measured. The internal heat transfer coefficient is determined by comparing the results of a numerical simulation based on volume averaging theory (VAT) with the experimental results. The only information needed is the basic material and geometric properties, the flow rate, and the fluid temperature response data. The computational procedure alleviates the need for solid and fluid phase temperature measurements within the porous medium. The internal heat transfer coefficient is determined in the core of a packed bed, and expressed in terms of the Nusselt number, over a Reynolds number range of 20 to 500. The Nusselt number and Reynolds number are based on the VAT scale hydraulic diameter, dh=4ɛ/S. The results compare favorably to those of other researchers and are seen to be independent of particle diameter. The success of this method, in determining the internal heat transfer coefficient in the core of a randomly packed bed of uniform spheres, suggests that it can be used to determine the internal heat transfer coefficient in other porous media.


Sign in / Sign up

Export Citation Format

Share Document