Mathematical Models and Methods of the Analysis of Computer Networks of Control of Power Supply of Railways Traction Substations

2017 ◽  
Vol 49 (2) ◽  
pp. 50-60 ◽  
Author(s):  
Alexander I. Stasyuk ◽  
Lidiya L. Goncharova
Author(s):  
Oleksandr Stasiuk ◽  
Valeriy Kuznetsov ◽  
Vitalii Zubok ◽  
Lidiya Goncharova ◽  
Antonina Muntian

The paper is devoted to analysis of modern directions of innovation-investment formation of intelligent computer networks that control the fast-moving technological processes of electricity supply. It is based on the conclusion that the problem of increasing the productivity of information exchange between information resources and consumers is dominant. A method for increasing the efficiency of information exchange is proposed as a search for the rational location of a new node and the organization of such a set of its connections among the whole set of nodes of the computer network, which provides a minimum average topological distance. Mathematical models of effective topological organization of connections in computer network of power consumption control at the level of traction substations, electric power distances and the railway in general are proposed.


2018 ◽  
Vol 47 (3) ◽  
pp. 39-47 ◽  
Author(s):  
Oleksandr Matusevych ◽  
Valeriy Kuznetsov ◽  
Viktor SYCHENKO

Purpose. To develop the method for increasing the efficiency of the equipment’s maintenance and repair system, ensuring necessary level of operational reliability of the equipment, safety and reliability of the electric equipment with minimal expenses on operation. Relevance. Aging of the power equipment in railway power supply systems sharply raised a need for assessment of its states and degree of risk for operation outside rated service life. In critical conditions of technological processes and operational modes of the railways it is necessary to increase the equipment’s operational reliability. The scheduled maintenance and repair system whose main technical and economic criterion is the minimum of equipment’s downtimes on the basis of a rigid regulation of repair cycles, in the conditions of market regulations in the field of repair in many cases does not provide the optimal decisions due to insufficient financing. The solution of this problem is possible by improvement of the maintenance and repair system. Under these conditions the main direction for supporting the operational reliability of power electric equipment on TS is a development of the modern methods based on individual supervision over real changes of technical condition of power equipment. Scientific novelty. In this article the authors proposed an integrated approach, on the basis of which can be developed the effective maintenance and repair system for traction power supply systems. Proposed approach allowed to react quickly to changes of service conditions on traction substations, to control the technical condition of power electric equipment under the conditions of uncertainty, to establish interrelation between quality of service and operational reliability of the equipment, to choose a service strategy on traction substations. Practical importance. The validity of the developed method was confirmed by the results of calculations and practically by choosing the optimal maintenance's option for transformer TDTN-25000/150-70 U1 (ТДТН-25000/150-70 У1) on traction power supply substation.


2021 ◽  
pp. 63-66
Author(s):  
A. L. Kashtanov ◽  
◽  
Yu. V. Plotnikov ◽  

The paper presents a method for selecting the installation locations of power reservation systems of traction substations to reduce electricity losses in the system of traction power supply of DC railways. The analysis of the main criteria affecting the efficiency and reliability of the DC traction power supply system is carried out. The algorithm for selecting the installation locations of power reservation systems has been developed, which allows selecting traction substations that provide the greatest energy effect during the installation of systems


2018 ◽  
Vol 239 ◽  
pp. 01049 ◽  
Author(s):  
Natalia Shurova ◽  
Valerii Li

In the past few years, there has been a trend towards an increase in the volume of transportation by railway. At the same time, the load on the railway infrastructure increases, in particular, on the traction power supply system. It is necessary to solve the problem of increasing the energy efficiency of the external electric power supply system in the conditions of growing freight turnover and taking into account the uncertainty of the initial data. The paper considers one of the methods of strengthening the traction power supply system. Based on the results of the study, an algorithm was developed for selecting the installation sites and power of compensating devices in a traction network in the conditions of increasing freight turnover and under the condition of increasing the energy efficiency of the external power supply system of traction substations due to unloading of supply lines by reactive power and leveling the load in phases. This methodology includes predicting power consumption, determining the installation sites and power of compensating devices in the traction network under condition of uncertainty of the initial data, and then assessing the energy efficiency of the decision made. A calculation was carried out for the proposed algorithm for a section of the Far Eastern Railway which includes nine traction substations.


2018 ◽  
Vol 16 ◽  
pp. 03001 ◽  
Author(s):  
Lucjan Setlak ◽  
Rafał Kowalik

Based on the analysis and mathematical models of synchronous electric machines (motor/generator), basing on permanent magnets, presented in this paper, the main importance of alternator AC power sources in the form of starter/generator (for conventional aircraft) and in the form of integrated unit starter (motor)/AC synchronous generator S/G AC (with respect to advanced aircraft concept in terms of more electric aircraft) was highlighted. Additionally, through the analysis and selected simulations of the on-board autonomous power supply system of the modern aircrafts, sources of electrical energy (synchronous motor/generator, integrated unit starter/AC generator) were located in board autonomic power system ASE (EPS, PES). Main components of this system are the electro-energetic power system EPS and the energo-electronic power system PES. In addition, the analysis and exemplary simulations of main electricity sources based on mathematical models have contributed to highlighting the main practical applications in accordance with the concept of MEA.


2015 ◽  
Vol 35 (3) ◽  
pp. 63-70 ◽  
Author(s):  
Viktor G. Sychenko ◽  
Dmitry O. Bosiy ◽  
Eugene M. Kosarev

Purpose of the work is improved approaches to ensure the required quality parameters of voltage in the traction network based on modern technologies and equipment in the application of power distribution system. Actuality. The introduction of high-speed traffic, increase weight standards Train necessitates increasing the carrying capacity of railways. Often the carrying capacity of existing sections electrified at 3.0 kV DC power supply unit limits. Such limitations include voltage decrease on the electric current collector below the allowable value for the normal operation of 2700 (2900 for high-speed V) and heating the contact wires, thereby losing their mechanical strength. Existing power supply system of RS, which have considerable installed traction substations, can not provide the required level of power density traction network for high-speed movement within 1.5 - 2 MW / km and, respectively, the required voltage quality. At the same time, the daily loading of a powerful traction substations in providing intensive schedule of trains does not exceed 20-25%, while the energy loss in traction network peak load increases and reaches 10-15% of the energy consumed. Thus, the existing system of power traction networks is not sufficiently effective and economical, even with the application of existing methods to strengthen them. In our view, the main limiting factor for a given quality of voltage in the traction network is the use of centralized power. From this, the development of measures to improve the quality of voltage in the traction network in the implementation of high-speed traffic in a growing scarcity of energy resources is an urgent task. Scientific novelty. Using distributed power supply system with adjustable supply points combined into intelligent power supply, which enables adaptive change the characteristics of the transfer, conversion and consumption and optimize the mode of functioning of the traction power supply is suggested for improving the quality of voltage in the traction network in the implementation of high-speed and heavy traffic. Practical significance. Improving the quality of voltage in the traction network by using the proposed circuit design traction power supply will ensure the desired mode voltage and power characteristics of the traction network in the implementation of high-speed and heavy traffic while reducing electricity losses by 20-30%.


2019 ◽  
Vol 78 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Yu. I. Zharkov ◽  
N. A. Popova ◽  
E. P. Figurnov

When calculating short-circuit currents in the AC traction network, it is assumed that each of the traction substations receives power from uncoupled external power supply sources with known resistances. In some cases, especially when powering a group of traction substations from a high-voltage power line of a longitudinal power supply, the external power supply system affects not only the magnitude of short-circuit currents, but also their redistribution between adjacent traction substations of the interstation area where this circuit is considered. Such unrecorded redistribution can have a negative effect on short circuit protection. The article considers the equivalent circuit of the traction network, taking into account resistance of the external power supply system. Particular attention is paid to the fact that in replacement circuits of direct and negative sequence value of reduced resistance of one phase of a multiwinding transformer, calculated from the short circuit voltage, does not depend on the connection scheme of its windings. It is noted that in some cases it is difficult to obtain a complete scheme of an external power supply system. Considering that the short circuit in the traction network for the external power supply system is remote, it is proposed taking into account the reference network or traction substations as power sources, from which high-voltage transmission lines power the traction substations. Resistance of the supporting substations as power sources must takes into account connected equivalent power system.Such equivalenting should be carried out by known values of currents or short-circuit powers at the inputs of the reference substation or, if such information is not available, by the rated values of the switched-off currents or powers of the switches of high-voltage line connections.The following power schemes for traction substations are considered: each from its own supporting substation, which is part of an electrically uncoupled external power supply system; from the double-circuit high-voltage line of longitudinal power supply when it is powered from different supporting substations; from the supporting network substation, the traction substation receives power from two lines, and from this the traction substations receive power from two lines in a circle pattern.These three common cases cover all the most common power schemes for traction substations. For each of them formulas are given to determine the resulting equivalent resistance of the external power supply circuit, which should be taken into account in the replacement circuit of the traction network.


2021 ◽  
Vol 2021 (4) ◽  
pp. 601-610
Author(s):  
Iliya A. TEREKHIN ◽  
◽  
Alexander Yu. BALAKIN ◽  

Objective: To assess the possibility of using alternative sources of electrical energy to power auxiliaries of traction substations of power supply divisions on the example of ECHE-20 “Bronevayaˮ. Methods: Alternative energy is used on the railways. Results: Equipment was selected and a solar power plant was designed, economic effi ciency from the introduction of an alternative energy source and its payback period were calculated. Practical importance: The designed alternative source of electrical energy makes it possible to increase the energy effi ciency indicators of production processes of railway transport


Sign in / Sign up

Export Citation Format

Share Document