scholarly journals Heat Transfer and Pressure Drop Characteristics of Fin-Tube Heat Exchangers with Different Types of Vortex Generator Configurations

2010 ◽  
Vol 17 (3) ◽  
pp. 243-256 ◽  
Author(s):  
Levent Bilir ◽  
Baris Ozerdem ◽  
Aytunc Erek ◽  
Zafer Ilken
2001 ◽  
Author(s):  
Arash Saidi ◽  
Daniel Eriksson ◽  
Bengt Sundén

Abstract This paper presents a discussion and comparison of some heat exchanger types readily applicable to use as intercoolers in gas turbine systems. The present study concerns a heat duty of the intercooler for a gas turbine of around 17 MW power output. Four different types of air-water heat exchangers are considered. This selection is motivated because of the practical aspects of the problem. Each configuration is discussed and explained, regarding advantages and disadvantages. The available literature on the pressure drop and heat transfer correlations is used to determine the thermal-hydraulic performance of the various heat exchangers. Then a comparison of the intercooler core volume, weight, pressure drop is presented.


Author(s):  
Ji Hwan Jeong ◽  
Keun Sun Chang ◽  
Young Chel Kweon ◽  
Sang Jae Lee ◽  
Min Kyu Lee

Experimental measurements and numerical analysis have been carried out in order to investigate performances of air-side heat transfer and pressure drop for six types of heat exhcangers with various fin shapes. An air-enthalpy calorimeter is used in this work. Numerical analysis shows a good agreement with experimental measurements. Measurements for six types of heat exchangers at various air-velocity are compared with each other. Heat transfer per unit area appears to be nearly the same in the range of 0.7~0.9 m/s while it varies within 3% at 1.5 m/s. The numerical results show that most of heat transfer takes place through fins for all types and majority of heat transfer happens from the 1st row.


Author(s):  
Mohammad Oneissi ◽  
Charbel Habchi ◽  
Serge Russeil ◽  
Daniel Bougeard ◽  
Thierry Lemenand

Abstract Vortex generators (VG) are widely used in multifunctional heat exchangers/reactors for augmenting the heat transfer from fin plates to the working fluid. In this study, numerical simulations for longitudinal VGs are performed for both laminar and turbulent flow regimes. The shear-stress transport (SST) κ–ω model is used for modeling turbulence. Inclination angle for a new streamlined VG configuration called inclined projected winglet pair (IPWP) was varied to study the effect of this angle on the heat transfer enhancement and pressure drop. Response surface methodology (RSM) was used to deduce the inclination angle effects on heat transfer, pressure drop, and vorticity from both local and global points of view. Such study highlights the optimization for this VG configuration for better heat transfer intensification, based on thermal enhancement factor (TEF). Finally, it is found that the VG with inclination angle ranging from 30 deg to 35 deg exhibits the best global performance compared to other inclination angles. This type of studies is important for the enhancement of the thermal performance of heat exchangers and static mixers in various engineering applications.


Author(s):  
L. H. Tang ◽  
G. N. Xie ◽  
M. Zeng ◽  
M. Lin ◽  
Q. W. Wang

Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (Do = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: Crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers are obtained with the Reynolds numbers ranging from 4000 to 10000. It is found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators and mixed fin with front 6-row vortex-generator fin / rear 6-row slit fin has been evaluated under four sets of criteria and it is shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on Genetic Algorithm optimization results it is indicated that the increase of length and decrease of height may enhance the performance of vortex generator fin.


Sign in / Sign up

Export Citation Format

Share Document