A Comparative Study of Fin-and-Tube Heat Exchangers With Various Fin Patterns

Author(s):  
L. H. Tang ◽  
G. N. Xie ◽  
M. Zeng ◽  
M. Lin ◽  
Q. W. Wang

Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (Do = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: Crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers are obtained with the Reynolds numbers ranging from 4000 to 10000. It is found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators and mixed fin with front 6-row vortex-generator fin / rear 6-row slit fin has been evaluated under four sets of criteria and it is shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on Genetic Algorithm optimization results it is indicated that the increase of length and decrease of height may enhance the performance of vortex generator fin.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1959 ◽  
Author(s):  
Ali Sadeghianjahromi ◽  
Saeid Kheradmand ◽  
Hossain Nemati ◽  
Jane-Sunn Liaw ◽  
Chi-Chuan Wang

This study performs a 3D turbulent flow numerical simulation to improve heat transfer characteristics of wavy finandtube heat exchangers. A compound design encompassing louver, flat, and vortex generator onto wavy fins can significantly enhance the heat transfer performance of wavy fin-and-tube heat exchangers. Replacement of wavy fins around tubes with flat fins is not effective as far as the reduction of thermal resistance is concerned, although an appreciable pressure drop reduction can be achieved. Adding two louvers with a width of 8 mm to the flat portion can reduce thermal resistance up to 6% in comparison with the reference wavy fin. Increasing the louver number and width can further decrease the thermal resistance. Also, it is found that the optimum louver angle is equal to the wavy angle for offering the lowest thermal resistance. Therefore, compound geometry with three louvers, a width of 12 mm, and the louver angle being equal to wavy angle with waffle height to be the same as fin pitch of the reference wavy fin has the most reduction in thermal resistance of 16% for a pumping power of 0.001 W. Adding punching longitudinal vortex generators on this compound geometry can further decrease thermal resistance up to 18%.


Author(s):  
V. Eliades ◽  
D. E. Nikitopoulos ◽  
S. Acharya

Local and global effects of cylindrical vortex generators on the mass transfer distributions over the four active walls of a square, rib-roughened rotating duct with a sharp 180° bend are investigated. Cylindrical vortex generators (rods) are placed above, and parallel to, every other rib on the leading and trailing walls of the duct so that their wake can interact with the shear layer and recirculation region formed behind the ribs, as well as the rotation-generated secondary flows. Local increases in near-wall turbulence intensity resulting from these interactions give rise to local enhancement of mass (heat) transfer. Measurements are presented for duct Reynolds numbers (Re) in the range 5000–30,000, and for rotation numbers in the range 0 to 0.3. The rib height-to-hydraulic diameter ratio (e/Dh) is fixed at 0.1, while the rib pitch-to-rib height ratio (P/e) is 10.5. The vortex generator rods have a diameter-to-rib height ratio (d/e) of 0.78, and the distance separating them from the ribs relative to the rib height (s/e) is 0.55. Mass transfer measurements of naphthalene sublimation have been carried out using an automated acquisition system and are correlated with heat transfer using the heat/mass transfer analogy. The results indicate that the vortex generators tend to enhance overall mass transfer in the duct, compared to the case where only ribs are present, both before and after the bend at high Reynolds and Rotation numbers. Local enhancements of up to 30% are observed on all four walls of the duct. At low Reynolds numbers (e.g. 5,000) the insertion of the rods often leads to degradation. At high Reynolds numbers (e.g. 30,000) the enhancement due to the rods occurs on the surfaces stabilized by rotation (trailing edge on the inlet pass and leading edge on the outlet pass) and the side walls.. The enhancement is more pronounced as the Rotation number is increased. The detailed measurements in a ribbed duct with vortex-generator rods clearly show localized regions of enhanced mass (heat) transfer at Reynolds and Rotation numbers within the envelope of practical interest for gas-turbine blade cooling applications.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Arash Behaeen ◽  
Mohammad Nimafar

One of the innovative ways to improve heat transfer properties of heat exchangers, is using nanofluids instead of traditional fluids. Due to presence of metal and oxides of metal particles in nanofluids structure, they have better potential in different environments and conditions than conventional fluids and having higher thermal conductivity causes improvements in heat transfer properties. In this research flow of two different nanofluids through a rectangular microchannel consisting of different number of longitudinal vortex generators (lvgs), has been investigated. Simulations conducted under laminar flow boundary condition and for different Reynolds numbers from 100 to 250. Considered volumetric concentration in this paper is 1, 1/6 and 2/3 %. Results showed, nanofluids and the LVGs remarkably enhance the heat transfer rates inside the microchannel. havg improved with increasing the nanoparticles volume concentrations and Reynolds number, whereas the opposite trends observed for pressure drop. havg improved for 4 to 12 and 9 to 18% for TiO2 and CuO nanofluids, respectively for different volume concentrations in simple microchannel. For lvg-enhanced microchannel the amount of improvements is about 9-14 and 5-10% for CuO and TiO2, respectively. Also using vortex generators alone improved havg for 15-25% for different number of lvgs.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


Transferring heat from one fluid to another fluid without losing of major energy is a challenging task in the food processing and other industries. Double Pipe Heat Exchanger (DPHE) are light capacity Heat Exchangers (HE) used for air and other gas applications. In the present work an attempt is made to enhance the heat transfer of DPHE with helical fins and vortex generator. The working fluids are air and steam (water vapour) along outer and inner pipes. The parameters considered are helix angles, i.e. 350 , 400 , & 450 and pitch size i.e. 80 mm, 75 mm and 70 mm, and a vertex generator. CATIA V5 and Autodesk CFD are used for modelling and analysis. It is found that 400 angle helix fin 70 mm pitch along Delta Wing type (Triangular) vortex generator (VG) gives best performance


2021 ◽  
Vol 2119 (1) ◽  
pp. 012012
Author(s):  
V I Terekhov ◽  
A Yu Dyachenko ◽  
V L Zhdanov ◽  
Ya J Smulsky ◽  
K A Sharov

Abstract The paper presents the results of an experimental study of the dynamics of separated flow and heat transfer behind a backward-facing step when using longitudinal vortex generators (LVGs) at an angle of -30º at Re = 4000. Longitudinal vortex generators represent a pair of plates with a height of 6 mm, located symmetrically relative to the flow. Along with the average values, the pulsation characteristics of the flow are considered. The thermohydraulic efficiency was estimated by the found dynamic and thermal characteristics.


Author(s):  
Wen-Jing Zhou ◽  
Ju-Fang Fan ◽  
Zhi-Geng Wu ◽  
Ya-Ling He ◽  
Wen-Quan Tao

The effects of main geometrical parameters of the longitudinal vortex generator (LVG) called “common flow up” on heat transfer enhancement and pressure loss are numerically investigated. Taguchi method is used to guide the numerical simulations. Based on the results of the Taguchi method, a new fin with the combination of different vortex generators is proposed to substitute the original wavy fin-and-tube surface. The results show that the new fin with LVGs can save 9.08% of pumping power while reaching the same amount of heat transfer rate as the wavy fin at inlet velocity of 2m/s, and it can also save 33% of heat transfer area.


2014 ◽  
Vol 694 ◽  
pp. 205-210
Author(s):  
Nan Cai ◽  
Li Ting Tian ◽  
Chun Hua Min ◽  
Cheng Yin Qi

In this paper, the heat transfer performance and flow resistance characteristics of the asymmetric arrangement of the rectangular winglet longitudinal vortex generators in the rectangular channels are numerically studied. Results show that at Re=500~2000, comparing with the symmetric arrangement of the longitudinal vortex generator, the Nusselt number of the asymmetric arrangement of the longitudinal vortex generator only decreased by 4% ~ 6%,while,the friction factor f decreases by 11% ~ 22%,the effect of flow drag reduction is very obvious. The asymmetric arrangements of the longitudinal vortex generators show the better overall thermal performance with the increase of j/f by 5% ~ 20%.


Sign in / Sign up

Export Citation Format

Share Document