ERRATUM: Heat Transfer and Pressure Drop Characteristics of Fin-Tub Heat Exchangers with Different Types of Vortex Generator Configurations by Levent Bilir, Baris Ozerdem, Aytunc Erek, & Zafer Ilken published in Volume 17, issue 3, pages 243-256 of the Journal of Enhanced Heat Transfer

2011 ◽  
Vol 18 (3) ◽  
pp. 261-269
2001 ◽  
Author(s):  
Arash Saidi ◽  
Daniel Eriksson ◽  
Bengt Sundén

Abstract This paper presents a discussion and comparison of some heat exchanger types readily applicable to use as intercoolers in gas turbine systems. The present study concerns a heat duty of the intercooler for a gas turbine of around 17 MW power output. Four different types of air-water heat exchangers are considered. This selection is motivated because of the practical aspects of the problem. Each configuration is discussed and explained, regarding advantages and disadvantages. The available literature on the pressure drop and heat transfer correlations is used to determine the thermal-hydraulic performance of the various heat exchangers. Then a comparison of the intercooler core volume, weight, pressure drop is presented.


Author(s):  
Hussain H. Al-Kayiem ◽  
Muna S. Kassim ◽  
Saud T. Taher

Nanoadditives are a type of heat transfer enhancement techniques adopted in heat exchangers to improve the performance of industrial plants through improvement of the thermal properties of base fluids. Recently, various types of inserts with nanofluids are adopted to enhance the thermal performance of double pipe heat exchangers. In the current article, TiO2/water nanofluid with multiple twisted tape inserts was investigated as a hybrid enhancement technique of heat transfer in straight pipes. The investigations were carried out experimentally and numerically at Reynolds numbers varied from 5000 to 20,000. Using nanofluid with 0.1% TiO2 nanoparticles volume fraction demonstrated enhanced heat transfer with slight increase in pressure drop. Results are showing a maximum increase of 110.8% in Nusselt number in a tube fitted with quintuple twisted tape inserts with 25.2% increase in the pressure drop. However, as the article is representing a part of specified book on heat exchangers, the literature has been extended to provide sufficient background to the reader on the use of nanotech, twisted inserts, and hybrid of compound nanofluids and inserts to enhance heat transfer processes.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1406 ◽  
Author(s):  
Hannes Fugmann ◽  
Eric Laurenz ◽  
Lena Schnabel

Enhanced heat transfer surfaces allow more energy-efficient, compact and lightweight heat exchangers. Within this study, a method for comparing different types of enhancement and different geometries with multiple objectives is developed in order to evaluate new and existing enhancement designs. The method’s objectives are defined as energy, volume, and mass efficiency of the enhancement. They are given in dimensional and non-dimensional form and include limitations due to thermal conductivity within the enhancement. The transformation to an explicit heat transfer rate per dissipated power, volume, or mass is described in detail. The objectives are visualized for different Reynolds numbers to locate beneficial operating conditions. The multi-objective problem is further on reduced to a single-objective problem by means of weighting factors. The implementation of these factors allows a straightforward performance evaluation based on a rough estimation of the energy, volume, and mass importance set by a decision maker.


Author(s):  
Mohammad Oneissi ◽  
Charbel Habchi ◽  
Serge Russeil ◽  
Daniel Bougeard ◽  
Thierry Lemenand

Abstract Vortex generators (VG) are widely used in multifunctional heat exchangers/reactors for augmenting the heat transfer from fin plates to the working fluid. In this study, numerical simulations for longitudinal VGs are performed for both laminar and turbulent flow regimes. The shear-stress transport (SST) κ–ω model is used for modeling turbulence. Inclination angle for a new streamlined VG configuration called inclined projected winglet pair (IPWP) was varied to study the effect of this angle on the heat transfer enhancement and pressure drop. Response surface methodology (RSM) was used to deduce the inclination angle effects on heat transfer, pressure drop, and vorticity from both local and global points of view. Such study highlights the optimization for this VG configuration for better heat transfer intensification, based on thermal enhancement factor (TEF). Finally, it is found that the VG with inclination angle ranging from 30 deg to 35 deg exhibits the best global performance compared to other inclination angles. This type of studies is important for the enhancement of the thermal performance of heat exchangers and static mixers in various engineering applications.


Author(s):  
L. H. Tang ◽  
G. N. Xie ◽  
M. Zeng ◽  
M. Lin ◽  
Q. W. Wang

Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (Do = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: Crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers are obtained with the Reynolds numbers ranging from 4000 to 10000. It is found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators and mixed fin with front 6-row vortex-generator fin / rear 6-row slit fin has been evaluated under four sets of criteria and it is shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on Genetic Algorithm optimization results it is indicated that the increase of length and decrease of height may enhance the performance of vortex generator fin.


2021 ◽  
Vol 11 (13) ◽  
pp. 5954
Author(s):  
Muhammad Ishaq ◽  
Amjad Ali ◽  
Muhammad Amjad ◽  
Khalid Saifullah Syed ◽  
Zafar Iqbal

Heat transfer enhancement in heat exchangers results in thermal efficiency and energy saving. In double-pipe heat exchangers (DPHEs), extended or augmented fins in the annulus of the two concentric pipes, i.e., at the outer surface of the inner pipe, are used to extend the surface of contact for enhancing heat transfer. In this article, an innovative diamond-shaped design of extended fins is proposed for DPHEs. This type of fin is considered for the first time in the design of DPHEs. The triangular-shaped and rectangular-shaped fin designs of DPHE, available in the literature, can be recovered as special cases of the proposed design. An h-adaptive finite element method is employed for the solution of the governing equations. The results are computed for various performance measures against the emerging parameters. The results dictate that the optimal configurations of the diamond-shaped fins in the DPHE for an enhanced heat transfer are recommended as follows: If around 4–6, 8–12, or 16–32 fins are to be placed in the DPHE, then the height of the fins should be 20%, 80%, or 100%, respectively, of the annulus width. If frictional loss of heat is also to be considered, then for fin-heights of 20–80% and 100% of the annulus width, the placement of 4 and 8 diamond-shaped fins, respectively, is recommended for an enhanced heat transfer. These recommendations are for the radii ratio (i.e., the ratio of the inner pipe radius to that of the outer pipe) of 0.25. The recommendations are be modified if the radii ratio is altered.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2069
Author(s):  
Eloy Hontoria ◽  
Alejandro López-Belchí ◽  
Nolberto Munier ◽  
Francisco Vera-García

This paper proposes a methodology aiming at determining the most influent working variables and geometrical parameters over the pressure drop and heat transfer during the condensation process of several refrigerant gases using heat exchangers with pipes mini channels technology. A multi-criteria decision making (MCDM) methodology was used; this MCDM includes a mathematical method called SIMUS (Sequential Interactive Modelling for Urban Systems) that was applied to the results of 2543 tests obtained by using a designed refrigeration rig in which five different refrigerants (R32, R134a, R290, R410A and R1234yf) and two different tube geometries were tested. This methodology allows us to reduce the computational cost compared to the use of neural networks or other model development systems. This research shows six variables out of 39 that better define simultaneously the minimum pressure drop, as well as the maximum heat transfer, saturation pressure fluid entering the condenser being the most important one. Another aim of this research was to highlight a new methodology based on operation research for their application to improve the heat transfer energy efficiency and reduce the CO2 footprint derived of the use of heat exchangers with minichannels.


Sign in / Sign up

Export Citation Format

Share Document