Silver nanoparticles from the leaf extract of Abies spectabilis inhibited cell growth and promoted apoptosis in breast cancer MCF-7 cells

Author(s):  
Ren Guanghui
Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4332
Author(s):  
Nurul Izzati Zulkifli ◽  
Musthahimah Muhamad ◽  
Nur Nadhirah Mohamad Zain ◽  
Wen-Nee Tan ◽  
Noorfatimah Yahaya ◽  
...  

A bottom-up approach for synthesizing silver nanoparticles (AgNPs-GA) phytomediated by Garcinia atroviridis leaf extract is described. Under optimized conditions, the AgNPs-GA were synthesized at a concentration of 0.1 M silver salt and 10% (w/v) leaf extract, 1:4 mixing ratio of reactants, pH 3, temperature 32 °C and 72 h reaction time. The AgNPs-GA were characterized by various analytical techniques and their size was determined to be 5–30 nm. FTIR spectroscopy indicates the role of phenolic functional groups in the reduction of silver ions into AgNPs-GA and in supporting their subsequent stability. The UV-Visible spectrum showed an absorption peak at 450 nm which reflects the surface plasmon resonance (SPR) of AgNPs-GA and further supports the stability of these biosynthesized nanoparticles. SEM, TEM and XRD diffractogram analyses indicate that AgNPs-GA were spherical and face-centered-cubic in shape. This study also describes the efficacy of biosynthesized AgNPs-GA as anti-proliferative agent against human breast cancer cell lines, MCF-7 and MCF-7/TAMR-1. Our findings indicate that AgNPs-GA possess significant anti-proliferative effects against both the MCF-7 and MCF-7/TAMR-1 cell lines, with inhibitory concentration at 50% (IC50 values) of 2.0 and 34.0 µg/mL, respectively, after 72 h of treatment. An induction of apoptosis was evidenced by flow cytometry using Annexin V-FITC and propidium iodide staining. Therefore, AgNPs-GA exhibited its anti-proliferative activity via apoptosis on MCF-7 and MCF-7/TAMR-1 breast cancer cells in vitro. Taken together, the leaf extract from Garcinia atroviridis was found to be highly capable of producing AgNPs-GA with favourable physicochemical and biological properties.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 743
Author(s):  
Oluwaseun Akinyele ◽  
Heather M. Wallace

Breast cancer is a complex heterogeneous disease with multiple underlying causes. The polyamines putrescine, spermidine, and spermine are polycationic molecules essential for cell proliferation. Their biosynthesis is upregulated in breast cancer and they contribute to disease progression. While elevated polyamines are linked to breast cancer cell proliferation, there is little evidence to suggest breast cancer cells of different hormone receptor status are equally dependent on polyamines. In this study, we characterized the responses of two breast cancer cells, ER+ (oestrogen receptor positive) MCF-7 and ER- MDA-MB-231 cell lines, to polyamine modulation and determined the requirement of each polyamine for cancer cell growth. The cells were exposed to DFMO (a polyamine pathway inhibitor) at various concentrations under different conditions, after which several growth parameters were determined. Exposure of both cell lines to DFMO induced differential growth responses, MCF-7 cells showed greater sensitivity to polyamine pathway inhibition at various DFMO concentrations than the MDA-MB-231 cells. Analysis of intracellular DFMO after withdrawal from growth medium showed residual DFMO in the cells with concomitant decreases in polyamine content, ODC protein level, and cell growth. Addition of exogenous polyamines reversed the cell growth inhibition, and this growth recovery appears to be partly dependent on the spermidine content of the cell. Similarly, DFMO exposure inhibits the global translation state of the cells, with spermidine addition reversing the inhibition of translation in the breast cancer cells. Taken together, these data suggest that breast cancer cells are differentially sensitive to the antitumour effects of polyamine depletion, thus, targeting polyamine metabolism might be therapeutically beneficial in breast cancer management based on their subtype.


2003 ◽  
Vol 17 (10) ◽  
pp. 2002-2012 ◽  
Author(s):  
Olga A. Sukocheva ◽  
Lijun Wang ◽  
Nathaniel Albanese ◽  
Stuart M. Pitson ◽  
Mathew A. Vadas ◽  
...  

Abstract Current understanding of cytoplasmic signaling pathways that mediate estrogen action in human breast cancer is incomplete. Here we report that treatment with 17β-estradiol (E2) activates a novel signaling pathway via activation of sphingosine kinase (SphK) in MCF-7 breast cancer cells. We found that E2 has dual actions to stimulate SphK activity, i.e. a rapid and transient activation mediated by putative membrane G protein-coupled estrogen receptors (ER) and a delayed but prolonged activation relying on the transcriptional activity of ER. The E2-induced SphK activity consequently activates downstream signal cascades including intracellular Ca2+ mobilization and Erk1/2 activation. Enforced expression of human SphK type 1 gene in MCF-7 cells resulted in increases in SphK activity and cell growth. Moreover, the E2-dependent mitogenesis were highly promoted by SphK overexpression as determined by colony growth in soft agar and solid focus formation. In contrast, expression of SphKG82D, a dominant-negative mutant SphK, profoundly inhibited the E2-mediated Ca2+ mobilization, Erk1/2 activity and neoplastic cell growth. Thus, our data suggest that SphK activation is an important cytoplasmic signaling to transduce estrogen-dependent mitogenic and carcinogenic action in human breast cancer cells.


Steroids ◽  
2016 ◽  
Vol 115 ◽  
pp. 90-97 ◽  
Author(s):  
Mahmoud Aghaei ◽  
Zeinab Yazdiniapour ◽  
Mustafa Ghanadian ◽  
Behzad Zolfaghari ◽  
Virginia Lanzotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document