EXPERIMENTAL INVESTIGATION OF BOUNDARY LAYER STATE ON THE SURFACE OF HIGH-SPEED TEST VEHICLE MODEL

2019 ◽  
Vol 50 (1) ◽  
pp. 39-52
Author(s):  
Stanislav Sergeevich Alyoshin ◽  
Valerii Nikolaevich Golubkin ◽  
Anatoliy Aleksandrovich Gubanov ◽  
Ivan Valerievich Nazhimov ◽  
Yurii Grigoryevich Shevalev ◽  
...  
Author(s):  
Shengjun Zhou ◽  
Haiwang Li ◽  
Zhi Tao ◽  
Ruquan You ◽  
Haoyu Duan

In the current study, the influence of different rotation conditions on the flow behavior is experimentally investigated by a new system which is designed for time-resolved PIV measurements of the smooth channels at rotation conditions. The Reynolds number equals 15000 and the rotation number ranges from 0 to 0.392 with an interval of 0.098. This new time-resolved Particle Image Velocimetry system consists of a 10 Watts continuous laser diode and a high-speed camera. The laser diode can provide a less than 1mm thickness sheet light. 6400 frames can be captured in one second by the high-speed camera. These two parts of the system are fixed on a rotating disk. In this case, the relative velocity of flows in the rotating smooth square channel can be measured directly to reduce the measurement error. This system makes high-speed camera close to the rotating channel, which allows a high resolution for the measurements of main stream. In addition, high accuracy and temporal resolution realize a detailed analysis of boundary layer characteristics in rotation conditions. Based on this system, experimental investigation has been undertaken. Results are presented of the evolution of velocity and boundary layer thickness at various rotation numbers and different circumferential positions.


Author(s):  
David J. Arend ◽  
John D. Wolter ◽  
Stefanie M. Hirt ◽  
John A. Gazzaniga ◽  
William T. Cousins ◽  
...  

Abstract An experimental investigation has been completed of the performance and operability of a first of its kind 0.289 scale boundary layer ingesting propulsor within the new 6.5ft × 6ft transonic embedded propulsor testbed of NASA’s 8ft × 6ft Supersonic Wind Tunnel. This propulsor consisted of a coupled inlet and distortion-tolerant fan stage design embedded in a simulated upper aft hybrid wing body aircraft installation. The boundary layer ingesting inlet had a length-to-diameter ratio of 0.67. The distortion tolerant fan was 22 inches in diameter and had a stage pressure ratio of 1.34 and a bypass ratio of 16. The embedded propulsor was evaluated at its Mach 0.78 local freestream conditions. At peak efficiency 100% design speed test conditions, it provided a mass flow weighted inlet total pressure recovery of 96.5% and an adiabatic fan stage efficiency of 87.9%. These values differed meaningfully from the pre-test computational fluid dynamic analysis based design intent. At this operating condition, the effects of inlet-fan coupling extended approximately 0.45 fan diameters upstream into the inlet. The inlet was measured to have a stability margin of approximately 28% and was pre-entry boundary layer separation limited. The fan had approximately 12% of stability margin at 100% corrected speed at which conditions it was flutter limited. It exhibited otherwise flutter free operation over its entire aircraft cruise operating map. Consistently increasing levels of fan stability margin were demonstrated at successively lower fan speeds to in excess of approximately 24% at 80% corrected speed. At each of these reduced speeds, fan stability margin was full annulus stall limited. Inlet airflow distortion remained one-per-rev throughout all tested conditions. At peak efficiency 100% speed test conditions, the boundary layer ingesting inlet airflow had steady state radial and circumferential ARP1420 distortion intensities of 1.2 and 7.2%, respectively. Peak time-variant distortion intensities of 2.3% radial and 8.9% circumferential were also recorded. Comparisons to pre-test computational fluid dynamic predictions are also provided.


2018 ◽  
Vol 49 (6) ◽  
pp. 595-609
Author(s):  
Stanislav Sergeevich Alyoshin ◽  
Valerii Nikolaevich Golubkin ◽  
Anatoly Aleksandrovich Gubanov ◽  
Ivan Valerievich Nazhimov ◽  
Vadim Alekseevich Talyzin ◽  
...  

2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Wenwu Zhou ◽  
Yu Rao ◽  
Hui Hu

An experimental investigation was conducted to quantify the characteristics of the turbulent boundary layer flows over a dimpled surface in comparison to those over a conventional flat plate. In addition to measuring surface pressure distributions to determine the friction factors of the test plates and to map the surface pressure inside the dimple cavity, a high-resolution digital particle image velocimetry (PIV) system was used to achieve detailed flow field measurements to quantify the characteristics of the turbulent boundary layer flows over the test plates and the evolution of the unsteady vortex structures inside the dimple cavity at the middle of the dimpled test plate. It was found that the friction factor of the dimpled plate would be about 30–80% higher than that of the flat plate, depending on the Reynolds number of the test cases. In comparison with those over a conventional flat surface, the flow characteristics of the turbulent boundary layer flows over the dimpled surface were found to be much more complicated with much stronger near-wall Reynolds stress and higher turbulence kinetic energy (TKE) levels, especially in the region near the back rims of the dimples. Many interesting flow features over the dimple surface, such as the separation of oncoming boundary layer flow from the dimpled surface when passing over the dimple front rim, the formation and periodic shedding of unsteady Kelvin–Helmholtz vortices in the shear layer over the dimple, the impingement of the high-speed incoming flow onto the back rim of the dimple, and the subsequent generation of strong upwash flow in the boundary flow to promote the turbulent mixing over the dimpled surface, were revealed clearly and quantitatively from the PIV measurement results. The quantitative measurement results are believed to be the first of its nature, which depict a vivid picture about the unique flow features over dimpled surfaces and their correlations with the enhanced heat transfer performance reported in previous studies.


1975 ◽  
Vol 8 (1) ◽  
pp. 743-759
Author(s):  
Karl-Heinz Brock ◽  
Eveline Gottzein ◽  
Ernst Männlein ◽  
Johann Pfefferl

1971 ◽  
Vol 44 (4) ◽  
pp. 962-995 ◽  
Author(s):  
A. G. Veith

Abstract We have shown that the cornering wet traction performance of tires, as measured with a special cornering trailer, is influenced by a number of factors and their interaction with each other. Unlike conventional low speed “spin-out” wet cornering traction testing, we have evaluated tire traction over the range 30–60 mph. Over this range there is a marked speed dependence in the rating of various tread rubbers and tread patterns. In general, tread rubbers show a wide range of performance ratings at the lower speeds (30–35 mph) and a narrower range at high speeds (55–60 mph). Various tread patterns on the contrary show similar behavior at low speeds but a wide divergence in traction level at high speeds. Higher durometer tread compounds show improved high speed traction for any given rubber. Tread hardness cannot be used as an omnibus indicator of wet traction performance, however, as each rubber has its own separate correlation line. Low coefficient pavement can have either low or high degrees of macrotexture, but the lack of microtexture or harshness (asperities in the fraction of a millimeter range) produces this type of pavement. Tires must perform safely on such pavement sections of public highways and the testing reported here was done on such test surfaces. Evaluations of four types of tread rubber show that they rank from high to low traction level in the order: SBR, Butyl, NR and BR (solution type) on smooth, low microtexture surfaces. Although BR gives low traction when used alone it is not so used in commercial tread compounds. When properly blended with SBR or NR, tread compounds containing BR give satisfactory traction performance and improved wear performance. The overall behavior of tires can be explained in terms of the concepts of hydrodynamic and boundary layer lubrication. At low speeds boundary layer lubrication predominates on all but the smoothest pavements. This accounts for the marked influence of tread rubber at low speeds. At high speeds both thick and thin film elastohydrodynamic lubrication predominate. In this speed range tread materials play a lesser role and tread pattern or geometry plays a larger role. The relative softness and deformability of tread compound, compared to pavement aggregate, accounts for the importance of elastohydrodynamic lubrication. Drawing on the work of many previous investigators and the data of this work it is postulated that the fraction of the tire contact area of a cornering tire that is in the elastohydrodynamic mode of lubrication is a linear function of speed. This accounts for the good linearity of the plots of traction as a function of speed. Test variability is discussed and steps taken to measure and control such relevant factors as water depth are outlined. The use of statistically designed testing programs with their inherent averaging character are advocated for those doing this work. In addition to their power at averaging test results, such designs uncover the strong interaction between tire and test variables that underlie all wet traction testing.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950008 ◽  
Author(s):  
Judy P. Yang ◽  
Bo-Lin Chen

The concept of vehicle-bridge interaction (VBI) was originally developed to investigate the dynamic behavior of bridges subjected to moving loads such as high-speed trains. In recent years, the VBI system was introduced to further explore the possibility of identifying bridge frequencies in order to monitor the health of bridges via the use of passing vehicles. Among the models of test vehicles, the sprung mass vehicle model with a single-degree-of-freedom vehicle body is the most common adopted one due to its simplicity. Nevertheless, for a test vehicle moving over the uneven pavement, the pitching effect arising from the vertical and rotational movements of the vehicle actually influences the identification of bridge frequencies. As such, a rigid-mass vehicle model is proposed in this work to improve the sprung mass vehicle model by including both vertical and rotational deflections. The analytical solutions to the rigid-mass VBI system are derived to verify the proposed model, and the numerical examples are provided to investigate the dynamic behavior of the VBI system subjected to road irregularity.


Automatica ◽  
1977 ◽  
Vol 13 (3) ◽  
pp. 205-223 ◽  
Author(s):  
Eveline Gottzein ◽  
Karl-Heinz Brock ◽  
Ernst Schneider ◽  
Johann Pfefferl

2014 ◽  
Vol 590 ◽  
pp. 135-143
Author(s):  
Cherng Shing Lin ◽  
Kuo Da Chou ◽  
Chia Chun Yu

Based on the European New Car Assessment Program, which offers rigorous testing conditions, this study developed a numerical model for the computer simulation of crash analysis and analyzed two crash situations: a high-speed vehicle crashing into a wall and a high-speed test vehicle crashing into a static vehicle. The Simulation model was constructed using the superior functions of the Patran software, and the Pam-crash software was employed to perform various calculations for analysis. In crashes, the structure of vehicle bodies are greatly compressed and deformed because of high-speed impact force, which simultaneously generates high speed acceleration. Vehicle structural deformation constricts the driver and passengers, and acceleration can cause them physical harm. Thus, the objective of this study was to identify the sources of harm to driver and passengers when crashes occur. The research results can be a reference for vehicle manufacturers in future vehicle development and a reference for future academic research.


Sign in / Sign up

Export Citation Format

Share Document