Measurement of Wet cornering Traction of Tires

1971 ◽  
Vol 44 (4) ◽  
pp. 962-995 ◽  
Author(s):  
A. G. Veith

Abstract We have shown that the cornering wet traction performance of tires, as measured with a special cornering trailer, is influenced by a number of factors and their interaction with each other. Unlike conventional low speed “spin-out” wet cornering traction testing, we have evaluated tire traction over the range 30–60 mph. Over this range there is a marked speed dependence in the rating of various tread rubbers and tread patterns. In general, tread rubbers show a wide range of performance ratings at the lower speeds (30–35 mph) and a narrower range at high speeds (55–60 mph). Various tread patterns on the contrary show similar behavior at low speeds but a wide divergence in traction level at high speeds. Higher durometer tread compounds show improved high speed traction for any given rubber. Tread hardness cannot be used as an omnibus indicator of wet traction performance, however, as each rubber has its own separate correlation line. Low coefficient pavement can have either low or high degrees of macrotexture, but the lack of microtexture or harshness (asperities in the fraction of a millimeter range) produces this type of pavement. Tires must perform safely on such pavement sections of public highways and the testing reported here was done on such test surfaces. Evaluations of four types of tread rubber show that they rank from high to low traction level in the order: SBR, Butyl, NR and BR (solution type) on smooth, low microtexture surfaces. Although BR gives low traction when used alone it is not so used in commercial tread compounds. When properly blended with SBR or NR, tread compounds containing BR give satisfactory traction performance and improved wear performance. The overall behavior of tires can be explained in terms of the concepts of hydrodynamic and boundary layer lubrication. At low speeds boundary layer lubrication predominates on all but the smoothest pavements. This accounts for the marked influence of tread rubber at low speeds. At high speeds both thick and thin film elastohydrodynamic lubrication predominate. In this speed range tread materials play a lesser role and tread pattern or geometry plays a larger role. The relative softness and deformability of tread compound, compared to pavement aggregate, accounts for the importance of elastohydrodynamic lubrication. Drawing on the work of many previous investigators and the data of this work it is postulated that the fraction of the tire contact area of a cornering tire that is in the elastohydrodynamic mode of lubrication is a linear function of speed. This accounts for the good linearity of the plots of traction as a function of speed. Test variability is discussed and steps taken to measure and control such relevant factors as water depth are outlined. The use of statistically designed testing programs with their inherent averaging character are advocated for those doing this work. In addition to their power at averaging test results, such designs uncover the strong interaction between tire and test variables that underlie all wet traction testing.

Author(s):  
B. A. Jujnovich ◽  
D. Cebon

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a “command steer” control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, “active” steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


1975 ◽  
Vol 97 (3) ◽  
pp. 341-348 ◽  
Author(s):  
R. J. Boness ◽  
J. J. Chapman

This paper reports on a study of ball motion, including the measurement of ball rolling axis, in deep groove bearings operating at high speeds under thrust load conditions. The technique employed relies on viewing the test bearing, operating in the conventional fixed outer ring mode, through a rotating prism which eliminates optically the gross rotation of the separator. Videotape recordings of a selected ball, distinctively marked and illuminated stroboscopically, allows a complete analysis of ball bearing kinematics. Experimental results of separator speed, ball speed and rolling axis together with separator slip, ball slip and spin velocities at both the inner and outer raceway contacts are presented for a wide range of loads and shaft speeds up to 12,000 rev/min. These results are compared with the existing theory of Jones. Discrepancies between predicted and actual ball motion are due to the assumption made by Jones in neglecting bearing element slip. A further analysis of the experimental results including both gyroscopic torques and slip based on elastohydrodynamic traction values for the test lubricant explains actual ball motion more fully.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2481 ◽  
Author(s):  
Ashraful Islam ◽  
Adam L. Houston ◽  
Ajay Shankar ◽  
Carrick Detweiler

Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500 m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5 m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions.


1951 ◽  
Vol 55 (485) ◽  
pp. 285-302 ◽  
Author(s):  
A. D. Young

SummaryIn this paper an attempt is made to review present knowledge of the subject of boundary layers at high speeds, without delving too deeply into the theory, and to draw attention to the results of practical interest. The introductory remarks describe broadly the special features of boundary layers in compressible flow, namely the existence of both thermal and velocity layers and their interdependence, the sensitivity of the external flow to the layers, and their inter-action with shock waves. The results of importance arising from the theory of the laminar boundary layer and of its stability to small disturbances are then discussed, followed by a summary of the present inadequate state of knowledge of turbulent boundary layer characteristics. It is noted that progress in the latter must await the production of more experimental data. The paper concludes with a discussion of scale effects and the allied problem of boundary layer—shock wave inter-action.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


1981 ◽  
Vol 103 (1) ◽  
pp. 1-5 ◽  
Author(s):  
W. L. Bowen ◽  
T. W. Murphy

This bearing with its preloaded, hollow rollers has the qualities required for high speed operation. Roller hollowness improves cooling ability and its lighter weight reduces the centrifugal force against the raceway. Preloading between inner and outer races for 360 deg insures good roller guidance and minimizes roller skidding. However, the problems of operating a full complement of rollers at very high speeds were unknown. Also, limitations caused by roller bending fatigue needed investigation. To answer these questions, a high speed test machine was constructed and a hollow roller test bearing was designed for operation at 3 million DN. This paper describes the construction of a high speed test cell and subsequent testing of a full complement, preloaded, 115 mm hollow roller bearing. Testing culminated in a successful endurance test of 1000 hours at 26,100 RPM (3 million DN). The results verified several advantages regarding roller stability and antiskidding qualities as well as demonstrating a unique fail-safe condition.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Christopher G. Cooley ◽  
Robert G. Parker

This study investigates the modal property structure of high-speed planetary gears with gyroscopic effects. The vibration modes of these systems are complex-valued and speed-dependent. Equally-spaced and diametrically-opposed planet spacing are considered. Three mode types exist, and these are classified as planet, rotational, and translational modes. The properties of each mode type and that these three types are the only possible types are mathematically proven. Reduced eigenvalue problems are determined for each mode type. The eigenvalues for an example high-speed planetary gear are determined over a wide range of carrier speeds. Divergence and flutter instabilities are observed at extremely high speeds.


2011 ◽  
Vol 84 (4) ◽  
pp. 565-579 ◽  
Author(s):  
Barun Kumar Samui ◽  
Manikanda Priya Prakasan ◽  
D. Chakrabarty ◽  
R. Mukhopadhyay

Abstract Hysteresis characteristics of high modulus low shrinkage (HMLS) polyester tire yarn and cord were evaluated to determine “specific work loss,” which indicate its heat generation characteristics. Test parameters were selectively chosen, considering the service conditions of high-speed passenger radial tires in which HMLS polyester tire cords are predominantly used. Specific work loss was found to increase exponentially with the increase in extent of stress relief. Dynamic property of this yarn and cord was also studied to determine “loss tangent (tan δ),” which influences rolling resistance of tires in service. A good correlation has been found between specific work loss of hysteresis test (a slow speed test) and tan δ of dynamic test (a high-speed test). Dynamic property of polyester dipped cord was investigated for a wide range of temperatures (100–180 °C) and frequencies (5–25 Hz). Tan δ at 100 °C was found to be relatively low and its magnitude remained at the same level for a wide range of frequencies. This is a favorable condition for the high-speed passenger radial tires, made out of HMLS polyester tire yarn. Microstructure of HMLS polyester yarn was analyzed. Crystallinity is around 43% (measured by Wide angle x-ray scattering); crystal width and long period are 61 and 142 Å, respectively.


Sign in / Sign up

Export Citation Format

Share Document