Fresh properties of self-compacting cold bonded fly ash lightweight aggregate concrete with different mineral admixtures

2012 ◽  
Vol 45 (12) ◽  
pp. 1849-1859 ◽  
Author(s):  
Erhan Güneyisi ◽  
Mehmet Gesoğlu ◽  
Emad Booya
2016 ◽  
Vol 135 ◽  
pp. 148-157 ◽  
Author(s):  
Payam Shafigh ◽  
Mohammad A. Nomeli ◽  
U. Johnson Alengaram ◽  
Hilmi Bin Mahmud ◽  
Mohd Zamin Jumaat

2013 ◽  
Vol 857 ◽  
pp. 105-109
Author(s):  
Xiu Hua Zheng ◽  
Shu Jie Song ◽  
Yong Quan Zhang

This paper presents an experimental study on the permeability and the pore structure of lightweight concrete with fly ash, zeolite powder, or silica fume, in comparison to that of normal weight aggregate concrete. The results showed that the mineral admixtures can improve the anti-permeability performance of lightweight aggregate concrete, and mixed with compound mineral admixtures further more. The resistance to chloride-ion permeability of light weight concrete was higher than that of At the same strength grade, the anti-permeability performance of lightweight aggregate concrete is better than that of normal weight aggregate concrete. The anti-permeability performance of LC40 was similar to that of C60. Mineral admixtures can obviously improve the pore structure of lightweight aggregate concrete, the total porosity reduced while the pore size decreased.


Author(s):  
Khairunisa Muthusamy ◽  
Mohamad Safwan Jaafar ◽  
Nili Wahida Azhar ◽  
Nurazzimah Zamri ◽  
Nadiah Samsuddin ◽  
...  

2020 ◽  
Vol 10 (21) ◽  
pp. 7871
Author(s):  
Jung-Nan Chang ◽  
Tung-Tsan Chen ◽  
Chang-Chi Hung ◽  
Her-Yung Wang

In this study, the fixed water/binder ratio is 0.40, four mineral admixtures: fly ash (FA), blast furnace slag (BFS), desulphurization slag (DLS), and glass LED powder (GLP), were added to lightweight aggregate concrete (LWAC), replacing 10% or 30% of the cement content, to study their heat insulation efficiency and engineering performance and to compare the economic impact of mineral admixtures on LWAC. In terms of heat insulation, the thermal conductivity (K value) of the controlled sample was 0.484 kcal/(m.h. °C) and the addition of mineral admixtures changed the concrete unit weight and water absorption ratio, thus reducing the K value by 0.41% to 25.71% and improving the heat insulation. As the mineral admixture hydration products and chemical contents differed, the heat insulation of the LWAC varied as well. The study indicated that the heat insulation is the greatest in concrete with the addition of 30% FA, followed by concrete with the addition of 10% GLP. The addition of mineral admixtures is 30%, the resistivity is 72–455% of the control group, and the resistivity of FA and GLP is higher than the control group. The study is indicated that the proper addition of mineral powder material has an apparent effect on increasing heat insulation efficiency.


Author(s):  
K Muthusamy ◽  
M Y Fadzil ◽  
A Z Muhammad Nazrin Akmal ◽  
S Wan Ahmad ◽  
Z Nur Azzimah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document