Analysis of the AR cistrome in normal and primary malignant prostate tumor tissue, and the dihydrotesterone (DHT)-regulated AR cistrome in LNCaP prostate cancer cells

Author(s):  
Z Chen

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1727
Author(s):  
Ana Carolina B. Sant’Anna-Silva ◽  
Juan A. Perez-Valencia ◽  
Marco Sciacovelli ◽  
Claude Lalou ◽  
Saharnaz Sarlak ◽  
...  

Tumor cells display metabolic alterations when compared to non-transformed cells. These characteristics are crucial for tumor development, maintenance and survival providing energy supplies and molecular precursors. Anaplerosis is the property of replenishing the TCA cycle, the hub of carbon metabolism, participating in the biosynthesis of precursors for building blocks or signaling molecules. In advanced prostate cancer, an upshift of succinate-driven oxidative phosphorylation via mitochondrial Complex II was reported. Here, using untargeted metabolomics, we found succinate accumulation mainly in malignant cells and an anaplerotic effect contributing to biosynthesis, amino acid, and carbon metabolism. Succinate also stimulated oxygen consumption. Malignant prostate cells displayed higher mitochondrial affinity for succinate when compared to non-malignant prostate cells and the succinate-driven accumulation of metabolites induced expression of mitochondrial complex subunits and their activities. Moreover, extracellular succinate stimulated migration, invasion, and colony formation. Several enzymes linked to accumulated metabolites in the malignant cells were found upregulated in tumor tissue datasets, particularly NME1 and SHMT2 mRNA expression. High expression of the two genes was associated with shorter disease-free survival in prostate cancer cohorts. Moreover, in-vitro expression of both genes was enhanced in prostate cancer cells upon succinate stimulation. In conclusion, the data indicate that uptake of succinate from the tumor environment has an anaplerotic effect that enhances the malignant potential of prostate cancer cells.



2021 ◽  
Vol 10 ◽  
Author(s):  
Ivy Chung ◽  
Kun Zhou ◽  
Courtney Barrows ◽  
Jacqueline Banyard ◽  
Arianne Wilson ◽  
...  

In American men, prostate cancer is the second leading cause of cancer-related death. Dissemination of prostate cancer cells to distant organs significantly worsens patients’ prognosis, and currently there are no effective treatment options that can cure advanced-stage prostate cancer. In an effort to identify compounds selective for metastatic prostate cancer cells over benign prostate cancer cells or normal prostate epithelial cells, we applied a phenotype-based in vitro drug screening method utilizing multiple prostate cancer cell lines to test 1,120 different compounds from a commercial drug library. Top drug candidates were then examined in multiple mouse xenograft models including subcutaneous tumor growth, experimental lung metastasis, and experimental bone metastasis assays. A subset of compounds including fenbendazole, fluspirilene, clofazimine, niclosamide, and suloctidil showed preferential cytotoxicity and apoptosis towards metastatic prostate cancer cells in vitro and in vivo. The bioavailability of the most discerning agents, especially fenbendazole and albendazole, was improved by formulating as micelles or nanoparticles. The enhanced forms of fenbendazole and albendazole significantly prolonged survival in mice bearing metastases, and albendazole-treated mice displayed significantly longer median survival times than paclitaxel-treated mice. Importantly, these drugs effectively targeted taxane-resistant tumors and bone metastases – two common clinical conditions in patients with aggressive prostate cancer. In summary, we find that metastatic prostate tumor cells differ from benign prostate tumor cells in their sensitivity to certain drug classes. Taken together, our results strongly suggest that albendazole, an anthelmintic medication, may represent a potential adjuvant or neoadjuvant to standard therapy in the treatment of disseminated prostate cancer.



2009 ◽  
Vol 16 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Jason M D'Antonio ◽  
Donald J Vander Griend ◽  
John T Isaacs

During middle G1 of the cell cycle origins of replication orchestrate the ordered assembly of the pre-replication complex (pre-RC), allowing licensing of DNA required for DNA replication. Cyclin-dependent kinase activation of the pre-RC facilitates the recruitment of additional signaling factors, which triggers DNA unwinding and replication, while limiting such DNA replication to once and only once per cell cycle. For both the normal and malignant prostate, androgen is the major stimulator of cell proliferation and thus DNA replication. In both cases, the binding of androgen to the androgen receptor (AR) is required. However, the biochemical cascade involved in such AR-stimulated cell proliferation and DNA synthesis is dramatically different in normal versus malignant prostate cells. In normal prostate, AR-stimulated stromal cell paracrine secretion of andromedins stimulates DNA replication within prostatic epithelial cells, in which AR functions as a tumor suppressor gene by inducing proliferative quiescence and terminal differentiation. By direct contrast, nuclear AR in prostate cancer cells autonomously stimulates continuous growth via incorporation of AR into the pre-RC. Such a gain of function by AR-expressing prostate cancer cells requires that AR be efficiently degraded during mitosis since lack of such degradation leads to re-licensing problems, resulting in S-phase arrest during the subsequent cell cycle. Thus, acquisition of AR as part of the licensing complex for DNA replication represents a paradigm shift in how we view the role of AR in prostate cancer biology, and introduces a novel vulnerability in AR-expressing prostate cancer cells apt for therapeutic intervention.



Author(s):  
Pooi-Fong Wong ◽  
Sazaly Abubakar

AbstractMalignant prostate tissues have markedly reduced zinc (Zn2+) contents in comparison to non-malignant tissues. In this study, we restored a high intracellular Zn2+ level to LNCaP prostate cancer cells by culturing the cells in a growth medium supplemented with a supraphysiological concentration of Zn2+ (10 μg/ml) over 5 weeks. The intracellular Zn2+ level increased in the Zn2+-treated cells, and there was a marked increase in the presence of zincosomes, a Zn2+-specific intracellular organelle. The proliferation rate of the Zn2+-treated cells was markedly reduced. There was also a significant increase (36.6% ± 6.4%) in the total tyrosine phosphorylated proteins. Vaccinia H1-related (VHR) phosphatase, zeta chain-associated protein-70 (ZAP-70) kinase and phosphorylated extracellular signal-regulated protein kinase 1 and 2 (p-ERK 1 and 2) were also present in higher abundance. Treatment with TPEN, which chelates Zn2+, reduced the abundance of VHR phosphatase and ZAP-70 kinase, but increased the abundance of p-ERK 1. However, the TPEN treatment restored the Zn2+-treated LNCaP cell proliferation to a rate comparable to that of the non Zn2+-treated cells. These results highlight the importance of a high intracellular Zn2+ content and the VHR/ZAP-70-associated pathways in the modulation of LNCaP prostate cancer cell growth.



2008 ◽  
Vol 26 (8) ◽  
pp. 800-808 ◽  
Author(s):  
Bruna Scaggiante ◽  
Serena Bonin ◽  
Luigi Cristiano ◽  
Salvatore Siracusano ◽  
Giorgio Stanta ◽  
...  


2016 ◽  
Vol 69 (6) ◽  
pp. 1120-1128 ◽  
Author(s):  
Anna Aakula ◽  
Pekka Kohonen ◽  
Suvi-Katri Leivonen ◽  
Rami Mäkelä ◽  
Petteri Hintsanen ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document