scholarly journals An efficient parameter identification procedure for soft sensitive clays

2016 ◽  
Vol 17 ◽  
pp. 76-88 ◽  
Author(s):  
Liang YE ◽  
Yin-fu JIN
Robotica ◽  
2017 ◽  
Vol 36 (3) ◽  
pp. 313-332 ◽  
Author(s):  
Roger Miranda-Colorado ◽  
Javier Moreno-Valenzuela

SUMMARYThis paper contributes by presenting a parameter identification procedure for n-degrees-of-freedom flexible joint robot manipulators. An advantage of the given procedure is the obtaining of robot parameters in a single experiment. Guidelines are provided for the computing of the joint position filtering and velocity estimation. The method relies in the filtered robot model, for which no acceleration measurements are required. The filtered model is expressed in regressor form, which allows applying a parameter identification procedure based on the least squares algorithm. In order to assess the performance of the proposed parameter identification scheme, an implementation of a least squares with forgetting factor (LSFF) parameter identification method is carried out. In order to assess the reliability of the tested identification schemes, a model-based trajectory tracking controller has been implemented twice in different conditions: one control experiment using the estimated parameters provided by the proposed scheme, and another experiment using the parameters given by the LSFF method. These real-time control experiments are compared with respect to numerical simulations using the estimated parameters for each identification method. For the proposed scheme, the comparison between experiments and numerical simulations indicates better accuracy in the torque and position prediction.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Hua-Wei Ko ◽  
Patrick Bazzoli ◽  
J. Adam Nisbett ◽  
Douglas Bristow ◽  
Yujie Chen ◽  
...  

Abstract A parameter identification procedure for identifying the parameters of a volumetric error model of a large machine tool requires hundreds of random volumetric error components in its workspace and thus takes hours of measurement time. It causes thermal errors of a large machine difficult to be tracked and compensated periodically. This paper demonstrates the application of the optimal observation design theories to volumetric error model parameter identification of a large five-axis machine. Optimal designs maximize the amount of information carried in the observations. In this paper, K-optimal designs are applied for the construction of machine-tool error observers by determining locations in the workspace at which 80 components of volumetric errors to be measured so that the model parameters can be identified in 5% of an 8-h shift. Many of optimal designs tend to localize observations at the boundary of the workspace. This leaves large volumes of the workspace inadequately represented, making the identified model inadequate. Therefore, the constrained optimization algorithms that force the distribution of observation points in the machine’s workspace are developed. Optimal designs reduce the number of observations in the identification procedure. This opens up the possibility of tracking thermal variations of the volumetric error model with periodic measurements. The design, implementation, and performance of a constrained K-optimal in tracking the thermal variations of the volumetric error over a 400-min period of operation are also reported. About 70–80% of machine-tool error can be explained using the proposed thermal error modeling methodology.


10.5772/45818 ◽  
2012 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Wenxiang Wu ◽  
Shiqiang Zhu ◽  
Xuanyin Wang ◽  
Huashan Liu

This paper concerns the problem of dynamic parameter identification of robot manipulators and proposes a closed-loop identification procedure using modified Fourier series (MFS) as exciting trajectories. First, a static continuous friction model is involved to model joint friction for realizable friction compensation in controller design. Second, MFS satisfying the boundary conditions are firstly designed as periodic exciting trajectories. To minimize the sensitivity to measurement noise, the coefficients of MFS are optimized according to the condition number criterion. Moreover, to obtain accurate parameter estimates, the maximum likelihood estimation (MLE) method considering the influence of measurement noise is adopted. The proposed identification procedure has been implemented on the first three axes of the QIANJIANG-I 6-DOF robot manipulator. Experiment results verify the effectiveness of the proposed approach, and comparison between identification using MFS and that using finite Fourier series (FFS) reveals that the proposed method achieves better identification accuracy.


Sign in / Sign up

Export Citation Format

Share Document