Early orthoceratoid cephalopods from the Argentine Precordillera (Lower-Middle Ordovician)

2007 ◽  
Vol 81 (6) ◽  
pp. 1266-1283 ◽  
Author(s):  
Björn Kröger ◽  
Matilde S. Beresi ◽  
Ed Landing

The Early and Middle Ordovician Orthocerida and Lituitida of Precordilleran Argentina are described, and their systematics and paleogeographic significance are revised. These cephalopods show a strong affinity to coeval faunas of North China, suggesting a location of the Precordillera at middle latitudes in the Southern Hemisphere east of the North China block and relatively close to the Gondwanan margin during the early Middle Ordovician. The descriptive terminology of characters of the septal necks, the position and shape of the siphuncule, and the shape of the connecting ring is improved. The distribution of these characters support an emendation of the Baltoceratidae, Sactorthoceratidae, and Proteoceratidae. Braulioceras n. gen. (Sactorthoceratidae) and Palorthoceras n. gen. (Orthoceratidae) are erected. The new species Braulioceras sanjuanense, Eosomichelinoceras baldisii, Gangshanoceras villicumense, and Rhynchorthoceras minor are proposed. Palorthoceras n. gen. from the Lower Ordovician Oepikodus evae Zone represents the earliest known orthocerid.

2015 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
HongHao Wang ◽  
JiangHai Li ◽  
HuaTian Zhang ◽  
Li Xu ◽  
WeiBo Li

2011 ◽  
Vol 7 (5) ◽  
pp. 775-778 ◽  
Author(s):  
Paul A. Selden ◽  
ChungKun Shih ◽  
Dong Ren

Nephila are large, conspicuous weavers of orb webs composed of golden silk, in tropical and subtropical regions. Nephilids have a sparse fossil record, the oldest described hitherto being Cretaraneus vilaltae from the Cretaceous of Spain. Five species from Neogene Dominican amber and one from the Eocene of Florissant, CO, USA, have been referred to the extant genus Nephila . Here, we report the largest known fossil spider, Nephila jurassica sp. nov., from Middle Jurassic (approx. 165 Ma) strata of Daohugou, Inner Mongolia, China. The new species extends the fossil record of the family by approximately 35 Ma and of the genus Nephila by approximately 130 Ma, making it the longest ranging spider genus known. Nephilidae originated somewhere on Pangaea, possibly the North China block, followed by dispersal almost worldwide before the break-up of the supercontinent later in the Mesozoic. The find suggests that the palaeoclimate was warm and humid at this time. This giant fossil orb-weaver provides evidence of predation on medium to large insects, well known from the Daohugou beds, and would have played an important role in the evolution of these insects.


2020 ◽  
Vol 35 (2) ◽  
Author(s):  
Dawei Lv ◽  
Wengui Fan ◽  
John I. Ejembi ◽  
Dun Wu ◽  
Dongdong Wang ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
MJosé Pérez-Alvarez ◽  
Sebastián Kraft ◽  
Nicolás I. Segovia ◽  
Carlos Olavarría ◽  
Sergio Nigenda-Morales ◽  
...  

Four fin whale sub-species are currently considered valid: Balaenoptera physalus physalus in the North Atlantic, B. p. velifera in the North Pacific, B. p. quoyi and B. p. patachonica in the Southern Hemisphere. The last, not genetically validated, was described as a pygmy-type sub-species, found in low to mid latitudes of the Southern Hemisphere. Genetic analyses across hemispheres show strong phylogeographic structure, yet low geographic coverage in middle latitudes of the Southern Hemisphere impeded an assessment within the area, as well as evaluating the validity of B. p. patachonica. New mtDNA sequences from the Southeastern Pacific allowed an improved coverage of the species’ distribution. Our phylogenetic analyses showed three main lineages and contrasting phylogeographic patterns between Northern and Southern Hemispheres. Absence of recurrent female mediated gene flow between hemispheres was found; however, rare dispersal events revealing old migrations were noted. The absence of genetic structure suggests the existence of one single taxa within the Southern Hemisphere. Thus, until further evidence supporting this subspecies can be produced, such as genetic, ecological, behavioral, or morphological data, we propose that all fin whales from the Southern Hemisphere, including those from middle latitudes of the Southeastern Pacific belong to B. p. quoyi subspecies. This information is important for the current assessment of fin whales, contributing to the evaluation of the taxonomic classification and the conservation of the species.


Lithos ◽  
2018 ◽  
Vol 302-303 ◽  
pp. 496-518 ◽  
Author(s):  
Qi-Qi Zhang ◽  
Shuan-Hong Zhang ◽  
Yue Zhao ◽  
Jian-Min Liu

2021 ◽  
pp. 1-18
Author(s):  
Dong-Jin Lee ◽  
Robert J. Elias ◽  
Brian R. Pratt

Abstract Modular coral-like fossils from Lower Ordovician (Tremadocian) thrombolitic mounds in the St. George Group of western Newfoundland were initially identified as Lichenaria and thought to include the earliest tabulate corals. They are here assigned to Amsassia terranovensis n. sp. and Amsassia? sp. A from the Watts Bight Formation, and A. diversa n. sp. and Amsassia? sp. B from the overlying Boat Harbour Formation. Amsassia terranovensis n. sp. and A. argentina from the Argentine Precordillera are the earliest representatives of the genus. Amsassia is considered to be a calcareous alga, possibly representing an extinct group of green algae. The genus originated and began to disperse in the Tremadocian, during the onset of the Great Ordovician Biodiversification Event, on the southern margin of Laurentia and the Cuyania Terrane. It inhabited small, shallow-marine reefal mounds constructed in association with microbes. The paleogeographic range of Amsassia expanded in the Middle Ordovician (Darriwilian) to include the Sino-Korean Block, as well as Laurentia, and its environmental range expanded to include non-reefal, open- and restricted-marine settings. Amsassia attained its greatest diversity and paleogeographic extent in the Late Ordovician (Sandbian–Katian), during the culmination of the Great Ordovician Biodiversification Event. Its range included the South China Block, Tarim Block, Kazakhstan, and Siberia, as well as the Sino-Korean Block and Laurentia, and its affinity for small microbial mounds continued during that time. In the latest Ordovician (Hirnantian), the diversity of Amsassia was reduced, its distribution was restricted to non-reefal environments in South China, and it finally disappeared during the end-Ordovician mass extinction. UUID: http://zoobank.org/ef0abb69-10a6-46de-8c78-d6ec7de185fe


2017 ◽  
Vol 141 ◽  
pp. 161-173 ◽  
Author(s):  
Liangshu Shu ◽  
Hongwei Yin ◽  
Michel Faure ◽  
Yan Chen

2005 ◽  
Vol 405 (1-4) ◽  
pp. 47-63 ◽  
Author(s):  
Yanghua Wang ◽  
G.A. Houseman ◽  
G. Lin ◽  
F. Guo ◽  
Y.-J. Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document