scholarly journals Mammalian target of rapamycin inhibition abrogates insulin-mediated mammary tumor progression in type 2 diabetes

2010 ◽  
Vol 17 (4) ◽  
pp. 941-951 ◽  
Author(s):  
Yvonne Fierz ◽  
Ruslan Novosyadlyy ◽  
Archana Vijayakumar ◽  
Shoshana Yakar ◽  
Derek LeRoith

Type 2 diabetes increases breast cancer risk and mortality, and hyperinsulinemia is a major mediator of this effect. The mammalian target of rapamycin (mTOR) is activated by insulin and is a key regulator of mammary tumor progression. Pharmacological mTOR inhibition suppresses tumor growth in numerous mammary tumor models in the non-diabetic setting. However, the role of the mTOR pathway in type 2 diabetes-induced tumor growth remains elusive. Herein, we investigated whether the mTOR pathway is implicated in insulin-induced mammary tumor progression in a transgenic mouse model of type 2 diabetes (MKR mice) and evaluated the impact of mTOR inhibition on the diabetic state. Mammary tumor progression was studied in the double transgenic MMTV-Polyoma Virus middle T antigen (PyVmT)/MKR mice and by orthotopic inoculation of PyVmT- and Neu/ErbB2-driven mammary tumor cells (Met-1 and MCNeuA cells respectively). mTOR inhibition by rapamycin markedly suppressed tumor growth in both wild-type and MKR mice. In diabetic animals, however, the promoting action of insulin on tumor growth was completely blunted by rapamycin, despite a worsening of the carbohydrate and lipid metabolism. Taken together, pharmacological mTOR blockade is sufficient to abrogate mammary tumor progression in the setting of hyperinsulinemia, and thus mTOR inhibitors may be an attractive therapeutic modality for breast cancer patients with type 2 diabetes. Careful monitoring of the metabolic state, however, is important as dose adaptations of glucose- and/or lipid-lowering therapy might be necessary.

Diabetes ◽  
2009 ◽  
Vol 59 (3) ◽  
pp. 686-693 ◽  
Author(s):  
Y. Fierz ◽  
R. Novosyadlyy ◽  
A. Vijayakumar ◽  
S. Yakar ◽  
D. LeRoith

2010 ◽  
Vol 20 ◽  
pp. S52
Author(s):  
Y.C. Fierz ◽  
R. Novosyadlyy ◽  
A. Vijayakumar ◽  
S. Yakar ◽  
D. LeRoith

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 853
Author(s):  
Lengyun Wei ◽  
Xuyang Lu ◽  
Shengmei Weng ◽  
Shenglong Zhu ◽  
Yongquan Chen

The association between intratumoral cholesteryl ester (CE) and tumor progression has been reported previously. The objective of our study was to investigate a causal effect of CE on mammary tumor progression. Using MMTV-PyMT (MMTV-polyoma virus middle T) transgenic mice and breast tumor cell MCF-7, we show that both exogenous and endogenous CE can increase mammary tumor growth, that CE upregulates the AKT/mTOR pathway, and that CE synthesis blockade suppresses this signaling pathway. Our data suggest that SOAT1, a sterol O-acyltransferase, may be a potential target for the treatment of breast cancer.


2021 ◽  
Vol 22 (10) ◽  
pp. 5207
Author(s):  
Chi Yan ◽  
Jinming Yang ◽  
Nabil Saleh ◽  
Sheau-Chiann Chen ◽  
Gregory D. Ayers ◽  
...  

Objectives: Inhibition of the PI3K/mTOR pathway suppresses breast cancer (BC) growth, enhances anti-tumor immune responses, and works synergistically with immune checkpoint inhibitors (ICI). The objective here was to identify a subclass of PI3K inhibitors that, when combined with paclitaxel, is effective in enhancing response to ICI. Methods: C57BL/6 mice were orthotopically implanted with syngeneic luminal/triple-negative-like PyMT cells exhibiting high endogenous PI3K activity. Tumor growth in response to treatment with anti-PD-1 + anti-CTLA-4 (ICI), paclitaxel (PTX), and either the PI3Kα-specific inhibitor alpelisib, the pan-PI3K inhibitor copanlisib, or the broad spectrum PI3K/mTOR inhibitor gedatolisib was evaluated in reference to monotherapy or combinations of these therapies. Effects of these therapeutics on intratumoral immune populations were determined by multicolor FACS. Results: Treatment with alpelisib + PTX inhibited PyMT tumor growth and increased tumor-infiltrating granulocytes but did not significantly affect the number of tumor-infiltrating CD8+ T cells and did not synergize with ICI. Copanlisib + PTX + ICI significantly inhibited PyMT growth and increased activation of intratumoral CD8+ T cells as compared to ICI alone, yet did not inhibit tumor growth more than ICI alone. In contrast, gedatolisib + ICI resulted in significantly greater inhibition of tumor growth compared to ICI alone and induced durable dendritic-cell, CD8+ T-cell, and NK-cell responses. Adding PTX to this regimen yielded complete regression in 60% of tumors. Conclusion: PI3K/mTOR inhibition plus PTX heightens response to ICI and may provide a viable therapeutic approach for treatment of metastatic BC.


2020 ◽  
Vol 14 ◽  
pp. 117822342093151 ◽  
Author(s):  
Ryan P Dawes ◽  
Kathleen A Burke ◽  
Daniel K Byun ◽  
Zhou Xu ◽  
Petr Stastka ◽  
...  

Preclinical models of breast cancer have established mechanistic links between psychological stress and cancer progression. However, epidemiological evidence linking stress and cancer is equivocal. We tested the impact of stress exposure in female mice expressing the mouse mammary tumor virus polyoma middle-T antigen (MMTV-PyMT), a spontaneous model of mammary adenocarcinoma that mimics metastatic hormone receptor–positive human breast cancer development. MMTV-PyMT mice were socially isolated at 6 to 7 weeks of age during premalignant hyperplasia. To increase the potency of the stressor, singly housed mice were exposed to acute restraint stress (2 hours per day for 3 consecutive days) at 8 to 9 weeks of age during early carcinoma. Exposure to this dual stressor activated both major stress pathways, the sympathetic nervous system and hypothalamic-pituitary-adrenal axis throughout malignant transformation. Stressor exposure reduced mammary tumor burden in association with increased tumor cleaved caspase-3 expression, indicative of increased cell apoptosis. Stress exposure transiently increased tumor vascular endothelial growth factor and reduced tumor interleukin-6, but no other significant alterations in immune/inflammation-associated chemokines and cytokines or changes in myeloid cell populations were detected in tumors. No stress-induced change in second-harmonic generation-emitting collagen, indicative of a switch to a metastasis-promoting tumor extracellular matrix, was detected. Systemic indicators of slowed tumor progression included reduced myeloid-derived suppressor cell (MDSC) frequency in lung and spleen, and decreased transforming growth factor β (TGF-β) content in circulating exosomes, nanometer-sized particles associated with tumor progression. Chronic β-adrenergic receptor (β-AR) blockade with nadolol abrogated stress-induced alterations in tumor burden and cleaved caspase-3 expression, lung MDSC frequency, and exosomal TGF-β content. Despite the evidence for reduced tumor growth, metastatic lesions in the lung were not altered by stress exposure. Unexpectedly, β-blockade in nonstressed mice increased lung metastatic lesions and splenic MDSC frequency, suggesting that in MMTV-PyMT mice, β-AR activation also inhibits tumor progression in the absence of stress exposure. Together, these results suggest stress exposure can act through β-AR signaling to slow primary tumor growth in MMTV-PyMT mice.


Glycobiology ◽  
2013 ◽  
Vol 23 (12) ◽  
pp. 1477-1490 ◽  
Author(s):  
Hazuki E Miwa ◽  
Wade R Koba ◽  
Eugene J Fine ◽  
Orsi Giricz ◽  
Paraic A Kenny ◽  
...  

Oncogene ◽  
2010 ◽  
Vol 29 (23) ◽  
pp. 3374-3385 ◽  
Author(s):  
S M Pontier ◽  
L Huck ◽  
D E White ◽  
J Rayment ◽  
V Sanguin-Gendreau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document