scholarly journals Stability and biological activities of heterodimeric and single-chain equine LH/chorionic gonadotropin variants

2008 ◽  
Vol 40 (4) ◽  
pp. 185-198 ◽  
Author(s):  
Sébastien Legardinier ◽  
Jean-Claude Poirier ◽  
Danièle Klett ◽  
Yves Combarnous ◽  
Claire Cahoreau

Recombinant equine LH/chorionic gonadotropin (eLH/CG) was expressed in the baculovirus–Sf9 insect cell system either as a single-chain with the C-terminus of the β-subunit fused to the N-terminus of the α-subunit or as non-covalently linked heterodimers with or without a polyhistidine tag at various locations. All these non-covalently linked eLH/CG variants were secreted as stable heterodimers in the medium of infected Sf9 cells. To assess the influence of the presence and the position of polyhistidine tag on LH bioactivity, we expressed four non-covalently linked tagged heterodimeric eLH/CG variants that were secreted in threefold higher quantities than the single chain. Among them, only two exhibited full in vitro LH bioactivity, relative to untagged heterodimers, namely the one His-tagged at the N-terminus of α-subunit and the other at the C-terminus of the β-subunit both of which are amenable to nickel-affinity purification. Furthermore, single-chain eLH/CG was found to be N- and O-glycosylated but nevertheless less active in in vitro LH bioassays than natural eCG and heterodimeric recombinant eLH/CG. The thermal stability of natural and recombinant hormones was assessed by the initial rates of dissociation from 20 to 90 °C. Heterodimeric eLH/CG from Sf9 cells was found to be as stable as pituitary eLH and serum eCG (T1/2, 74–77 °C). Although Sf9 cells only elaborated short immature-type carbohydrate side chains on glycoproteins, recombinant eLH/CG produced in these cells exhibited stabilities similar to that of pituitary eLH. In conclusion, recombinant heterodimeric eLH/CG exhibits the same thermal stability as natural pituitary LH and its advantages over the single-chain eLH/CG include higher secretion, higher in vitro bioactivity, and reduced potential risk of immunogenicity.

Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3977-3986 ◽  
Author(s):  
Satarupa Roy ◽  
Sunita Setlur ◽  
Rupali A. Gadkari ◽  
H. N. Krishnamurthy ◽  
Rajan R. Dighe

The strategy of translationally fusing the α- and β-subunits of human chorionic gonadotropin (hCG) into a single-chain molecule has been used to produce novel analogs of hCG. Previously we reported expression of a biologically active single-chain analog hCGαβ expressed using Pichia expression system. Using the same expression system, another analog, in which the α-subunit was replaced with the second β-subunit, was expressed (hCGββ) and purified. hCGββ could bind to LH receptor with an affinity three times lower than that of hCG but failed to elicit any response. However, it could inhibit response to the hormone in vitro in a dose-dependent manner. Furthermore, it inhibited response to hCG in vivo indicating the antagonistic nature of the analog. However, it was unable to inhibit human FSH binding or response to human FSH, indicating the specificity of the effect. Characterization of hCGαβ and hCGββ using immunological tools showed alterations in the conformation of some of the epitopes, whereas others were unaltered. Unlike hCG, hCGββ interacts with two LH receptor molecules. These studies demonstrate that the presence of the second β-subunit in the single-chain molecule generated a structure that can be recognized by the receptor. However, due to the absence of α-subunit, the molecule is unable to elicit response. The strategy of fusing two β-subunits of glycoprotein hormones can be used to produce antagonists of these hormones.


2000 ◽  
Vol 345 (2) ◽  
pp. 247-254 ◽  
Author(s):  
Anita GOYAL ◽  
Janendra K. BATRA

Chimaeric toxins have considerable therapeutic potential to treat various malignancies. We have previously used the fungal ribonucleolytic toxin restrictocin to make chimaeric toxins in which the ligand was fused at either the N-terminus or the C-terminus of the toxin. Chimaeric toxins containing ligand at the C-terminus of restrictocin were shown to be more active than those having ligand at the N-terminus of the toxin. Here we describe the further engineering of restrictocin-based chimaeric toxins, anti-TFR(scFv)-restrictocin and restrictocin-anti-TFR(scFv), containing restrictocin and a single chain fragment variable (scFv) of a monoclonal antibody directed at the human transferrin receptor (TFR), to enhance their cell-killing activity. To promote the independent folding of the two proteins in the chimaeric toxin, a linear flexible peptide, Gly-Gly-Gly-Gly-Ser, was inserted between the toxin and the ligand to generate restrictocin-linker-anti-TFR(scFv) and anti-TFR(scFv)-linker-restrictocin. A 12-residue spacer, Thr-Arg-His-Arg-Gln-Pro-Arg-Gly-Trp-Glu-Gln-Leu, containing the recognition site for the protease furin, was incorporated between the toxin and the ligand to generate restrictocin-spacer-anti-TFR(scFv) and anti-TFR(scFv)-spacer-restrictocin. The incorporation of the proteolytically cleavable spacer enhanced the cell-killing activity of both constructs by 2-30-fold depending on the target cell line. However, the introduction of linker improved the cytotoxic activity only for anti-TFR(scFv)-linker-restrictocin. The proteolytically cleavable spacer-containing chimaeric toxins had similar cytotoxic activities irrespective of the location of the ligand on the toxin and they were found to release the restrictocin fragment efficiently on proteolysis in vitro.


Endocrinology ◽  
2012 ◽  
Vol 153 (2) ◽  
pp. 954-960 ◽  
Author(s):  
Naiel Azzam ◽  
Rinat Bar-Shalom ◽  
Fuad Fares

TSH is a dimeric glycoprotein hormone composed of a common α-subunit noncovalently linked to a hormone-specific β-subunit. Previously, the TSH heterodimer was successfully converted to an active single-chain hormone by genetically fusing α and β genes with [TSHβ- carboxyl-terminal peptide (CTP)-α] or without (TSHβ-α) the CTP of human chorionic gonadotropin β-subunit as a linker. In the present study, TSH variants were expressed in Chinese hamster ovarian cells. The results indicated that TSHβ-α single chain has the highest binding affinity to TSH receptor and the highest in vitro bioactivity. With regard to the in vivo bioactivity, all TSH variants increased the levels of T4 in circulation after 2 and 4 h of treatment. However, the level of T4 after treatment with TSH-wild type was significantly decreased after 6 and 8 h, compared with the levels after treatment with the other TSH variants. TSHβ-α and TSHβ-CTP-α single chains exhibited almost the same bioactivity after 8 h of treatment. Evaluating the half-life of TSH variants, TSHβ-CTP-α single chain revealed the longest half-life in circulation, whereas TSH-wild type exhibited the shortest serum half-life. These findings indicate that TSH single-chain variants with or without CTP as a linker may display conformational structures that increase binding affinity and serum half-life, thereby, suggesting novel attitudes for engineering and constructing superagonists of TSH, which may be used for treating different conditions of defected thyroid gland activity. Other prominent potential clinical use of these variants is in a diagnostic test for metastasis and recurrence of thyroid cancer.


1976 ◽  
Vol 160 (3) ◽  
pp. 615-619 ◽  
Author(s):  
K Muralidhar ◽  
N R Moudgal

By using radioimmunoassay, the interaction of sheep lutropin (luteinizing hormone, LH) β-subunit with rat ovarian receptors was investigated. The binding of β-subunit was specific, although of much lower order than that of lutropin. Sheep lutropin β-subunit effectively inhibited the binding of human choriogonadotropin (chorionic gonadotropin, gCG) to the ovary, showing that both occupy the same sites. The binding of sheep lutropin β-subunit to ovary was not followed by any detectable increase in cyclic AMP. The ovarian response to lutropin in terms of cyclic AMP production was inhibited in the presence of free β-subunit. The α-subunit of lutropin, when used at concentrations where contamination with whole lutropin was negligible, enhanced the degree of binding of β-subunit; this did not lead to increased cyclic AMP in the tissue. Surprisingly, the binding of β-subunit in vitro was drastically decreased by the prior removal of all endogenous rat lutropin bound to receptors. The implications of these data are discussed in the light of the reported biological activity of the β-subunit.


Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2845-2850 ◽  
Author(s):  
Naiel Azzam ◽  
Rinat Bar-Shalom ◽  
Zaki Kraiem ◽  
Fuad Fares

Abstract TSH is a heterodimeric glycoprotein hormone synthesized in the pituitary and composed of a specific β-subunit and a common α-subunit shared with FSH, LH, and human chorionic gonadotropin. The heterodimer was previously converted into a biologically active single chain protein by genetic fusion of the genes coding to both subunits in the presence of the carboxy-terminal sequence of human (h) chorionic gonadotropin-β subunit as a linker [hTSHβ-carboxyl-terminal peptide (CTP)-α]. N-linked carbohydrate-free single-chain TSH variants were constructed by site-directed mutagenesis and overlapping PCR: one devoid of both N-linked oligosaccharide chains on the α-subunit (hTSHβ-CTP-αdeg) and the other lacking also the oligosaccharides on the β-subunit (hTSHβdeg-CTP-αdeg). These variants were expressed in Chinese hamster ovary cells and secreted into the culture media. We have previously reported that the variants block the activities of hTSH and thyroid-stimulating immunoglobulins in cultured human thyroid follicles. In the present study, binding affinity of hTSH variants to hTSH receptor and the localization of the antagonistic effect were examined. Moreover, the effect of these variants on TSH activity was tested in vivo. The results of the present study indicate that the hTSH variants bind to the hTSH receptor with high affinity. Experiments using forskolin also indicated that the N-linked carbohydrate-free TSH single-chain variants inhibit TSH activity at the receptor-binding site and not at a postreceptor level. Moreover, the variants significantly inhibited (about 50%) TSH activity with respect to thyroid hormone secretion in vivo in mice. These variants may offer a novel therapeutic strategy in treating hyperthyroidism.


2006 ◽  
Vol 20 (6) ◽  
pp. 1437-1446 ◽  
Author(s):  
Albina Jablonka-Shariff ◽  
T. Rajendra Kumar ◽  
Joshua Eklund ◽  
Anna Comstock ◽  
Irving Boime

Abstract The human glycoprotein hormones chorionic gonadotropin (CG), TSH, LH, and FSH are heterodimers composed of a common α-subunit and a hormone-specific β-subunit. The subunits assemble noncovalently early in the secretory pathway. LH and FSH are synthesized in the same cell (pituitary gonadotrophs), and several of the α-subunit sequences required for association with either β-subunit are different. Nevertheless, no ternary complexes are observed for LH and FSH in vivo, i.e. both β-subunits assembled with a single α-subunit. To address whether the α-subunit can interact with more than one β-subunit simultaneously, we genetically linked the FSHβ- and CGβ-subunit genes to the common α-subunit, resulting in a single-chain protein that exhibited both activities in vitro. These studies also indicated that the bifunctional triple-domain variant (FSHβ-CGβ-α), is secreted as two distinct bioactive populations each corresponding to a single activity, and each bearing the heterodimer-like contacts. Although the data are consistent with the known secretion events of gonadotropins from the pituitary, we could not exclude the possibility whether transient intermediates are generated in vivo in which the α-subunit shuttles between the two β-subunits during early stages of accumulation in the endoplasmic reticulum. Therefore, constructs were engineered that would direct the synthesis of single-chain proteins completely devoid of heterodimer-like interactions but elicit both LH and FSH actions. These triple-domain, single-chain chimeras contain the FSHβ- and CGβ-subunits and an α-subunit with cystine bond mutations (cys10–60 or cys32–84), which are known to prevent heterodimer formation. Here we show that, despite disrupting the intersubunit interactions between the α- and both CGβ- and FSHβ-subunits, these mutated analogs exhibit both activities in vivo comparable to nonmutated triple-domain single chain. Such responses occurred despite the absence of quaternary contacts due to the disrupted bonds in the α-subunit. Thus, gonadotropin heterodimer assembly is critical for intracellular events, e.g. hormone-specific posttranslational modifications, but when heterodimers are present in the circulation, the α/β-contacts are not a prerequisite for receptor recognition.


2006 ◽  
Vol 281 (10) ◽  
pp. 6194-6202 ◽  
Author(s):  
Jennifer E. Grant ◽  
Lian-Wang Guo ◽  
Martha M. Vestling ◽  
Kirill A. Martemyanov ◽  
Vadim Y. Arshavsky ◽  
...  

2020 ◽  
Vol 167 (5) ◽  
pp. 473-482 ◽  
Author(s):  
Sung-Gun Kim ◽  
Yu-Jen Chen ◽  
Liliana Falzon ◽  
Jean Baum ◽  
Masayori Inouye

Abstract Nascent polypeptides are synthesized on ribosomes starting at the N-terminus and simultaneously begin to fold during translation. We constructed N-terminal fragments of prosubtilisin E containing an intramolecular chaperone (IMC) at N-terminus to mimic cotranslational folding intermediates of prosubtilisin. The IMC-fragments of prosubtilisin exhibited progressive enhancement of their secondary structures and thermostabilities with increasing polypeptide length. However, even the largest IMC-fragment with 72 residues truncated from the C-terminus behaved as a molten globule, indicating the requirement of the C-terminal region to have a stable tertiary structure. Furthermore, truncation of the IMC in the IMC-fragments resulted in aggregation, suggesting that the IMC plays a crucial role to prevent misfolding and aggregation of cotranslational folding intermediates during translation of prosubtilisin polypeptide.


1991 ◽  
Vol 129 (2) ◽  
pp. R9-R12 ◽  
Author(s):  
P.G. Knight ◽  
N. Groome ◽  
A.J. Beard

ABSTRACT A two-site (liquid-phase) immunoradiometric assay (IRMA) for dimeric inhibin has been developed using antibodies raised against synthetic peptide sequences corresponding to the N-terminus (1-32) of the α subunit and the C-terminal region (82-114) of the βA subunit of Mr ∼30,000 human inhibin. Highly-purified Mr 32,000 bovine inhibin (standard) gave a dilution curve parallel to those for bovine follicular fluid (bFF), human (h)FF and rat ovary extract. Whilst the assay detected both Mr 56,000 and 32,000 inhibin forms in bFF, little reaction with higher Mr forms was evident. Cross-reaction of 'free' inhibin subunit (Mr 25,000 form) and recombinant human activin A in the IRMA were minimal (< 0.1 and < 2% respectively). Although the detection limit of the IRMA (∼ 50 pg/tube) was similar to that of several reported radioimmunoassays (RIA), the IRMA was unable to detect dimeric inhibin in jugular or utero-ovarian vein plasma of heifers. Similarly, when assayed by IRMA, bFF, hFF and rat ovary extract contained 8-58 times less inhibin than was indicated by RIA. These observations are consistent with earlier evidence that the ovary secretes a substantial excess of 'free' inhibin α subunit and that this material reaches the peripheral circulation. Surprisingly, however, the inhibin contents of bFF, hFF and rat ovary extract determined by in vitro bioassay were 8-23 times greater than the corresponding IRMA values, being similar to those derived by RIA. It is suggested that this quantitative discrepancy between inhibin contents estimated by IRMA and bioassay may be due to (1) loss of bioactivity of the inhibin standard during its purification and/or storage, (2) failure of the IRMA to detect high Mr forms of bioactive inhibin and/or (3) cross reaction of follistatin and other FSH-suppressing substances in the in vitro bioassay.


Sign in / Sign up

Export Citation Format

Share Document