Cloning of rabbit prolactin cDNA and prolactin gene expression in the rabbit mammary gland

1996 ◽  
Vol 16 (1) ◽  
pp. 27-37 ◽  
Author(s):  
L Gabou ◽  
M Boisnard ◽  
I Gourdou ◽  
H Jammes ◽  
J-P Dulor ◽  
...  

ABSTRACT cDNA clones coding for rabbit prolactin were isolated from a pituitary library using a rat prolactin RNA probe. One cDNA contained 873 bases including the entire coding sequence of rabbit prolactin, its signal peptide and the 5′ and 3′ untranslated regions of 44 and 145 nucleotides respectively. The deduced amino acid sequence of the cloned prolactin cDNA presented a 93–78% identity with mink, porcine and human prolactins. The prolactin gene transcription was investigated by RT-PCR analysis in several organs of midlactating New Zealand White rabbits. The ectopic transcription of the prolactin gene was examined in more detail in the mammary gland. A strong PCR signal was detected in the mammary gland of virgin does and was also observed during pregnancy and at the beginning of lactation. This PCR signal was very weak in mid-lactating and absent in post-weaning mammary gland.

2004 ◽  
Vol 32 (3) ◽  
pp. 963-974 ◽  
Author(s):  
Y Hidaka ◽  
M Suzuki

Four types of calcitonin are produced in salmonid fish, although their functional diversity is almost unknown. To explore the significance of these isoforms, we have characterized salmon-type calcitonin (sCT) mRNAs in the rainbow trout (Oncorhynchus mykiss), and examined their tissue distribution. In addition to the previously isolated sCT-I cDNAs, two new forms of sCT cDNA were cloned from the ultimobranchial gland, and one of them (sCT-IV cDNA) was predicted to encode an N-terminal peptide of 80 amino acid residues, a putative cleavage site Lys-Arg, sCT-IV, a cleavage and amidation sequence Gly-Lys-Lys-Arg, and a C-terminal peptide of 18 amino acids. The sCT-IV precursor was 78% identical with the rainbow trout sCT-I precursors. The other cloned cDNA encoded a precursor for a novel CT, sCT-V. The sCT-V peptide was different from sCT-IV by only one amino acid residue: Val at position 8 in the latter was replaced by Met. The sCT-V precursor had 80 and 90% identity with the sCT-I and -IV precursors respectively. No cDNA clones were obtained for sCTs-II or -III.Tissue distribution of sCT-I, -IV and -V mRNAs was examined by RT-PCR and specific cleavage with restriction enzymes. An amplified fragment from sCT-I mRNA was detected not only in the ultimobranchial gland, but also in the gills, testis and ovary. RT-PCR analysis coupled to restriction digestion further revealed that sCT-IV mRNA was expressed in both the testis and the ultimobranchial gland. The expression sites of sCT-IV mRNA were localized to the Leydig cells of the testis and to the parenchymal cells of the ultimobranchial gland, by in situ hybridization histochemistry. Although the amino acid sequence of sCT-V peptide was nearly the same as that of sCT-IV, the sCT-V gene showed a much wider pattern of expression: the band amplified by RT-PCR was detected in all the tissues examined except the kidney, gills and blood cells. The sCT-V mRNA was shown to be localized in the parenchymal cells of the ultimobranchial gland, but not in other tissues at the cellular level, suggesting very low expression of sCT-V mRNA in those tissues. Our results show different patterns of tissue expression of three types of sCT genes in the rainbow trout, suggesting that sCTs-I, -IV and -V might differ in their local actions.


1993 ◽  
Vol 291 (3) ◽  
pp. 787-792 ◽  
Author(s):  
R Z Zhang ◽  
T C Pan ◽  
R Timpl ◽  
M L Chu

cDNA clones encoding the alpha 1, alpha 2 and alpha 3 chains of mouse collagen VI have been isolated by screening cDNA libraries with the corresponding human probes. The composite cDNAs for the alpha 1, alpha 2, and alpha 3 chains are 2.5, 1.6 and 2.9 kb in size respectively. The alpha 1 and alpha 2 cDNAs encode the C-terminal portions of the chains as well as the entire 3′-untranslated regions, while the alpha 3 cDNAs encode a central segment of 959 amino acids flanking the triple-helical domain. The deduced amino acid sequences share 86-88% identity with the human counterparts and 67-73% identity with the chicken equivalents. Alignment of the deduced amino acid sequences of mouse, human and chicken collagens reveal that the key features of the protein, including the cysteine residues, imperfections in the Gly-Xaa-Xaa regions, Arg-Gly-Asp sequences and potential N-glycosylation sites, are mostly conserved.


2004 ◽  
Vol 32 (2) ◽  
pp. 449-466 ◽  
Author(s):  
S Bauersachs ◽  
S Rehfeld ◽  
SE Ulbrich ◽  
S Mallok ◽  
K Prelle ◽  
...  

The oviduct epithelium undergoes marked morphological and functional changes during the oestrous cycle. To study these changes at the level of the transcriptome we did a systematic gene expression analysis of bovine oviduct epithelial cells at oestrus and dioestrus using a combination of subtracted cDNA libraries and cDNA array hybridisation. A total of 3072 cDNA clones of two subtracted libraries were analysed by array hybridisation with cDNA probes derived from six cyclic heifers, three of them slaughtered at oestrus and three at dioestrus. Sequencing of cDNAs showing significant differences in their expression levels revealed 77 different cDNAs. Thirty-seven were expressed at a higher level at oestrus, for the other 40 genes expression levels were higher at dioestrus. The identified genes represented a variety of functional classes. During oestrus especially genes involved in the regulation of protein secretion and protein modification, and mRNAs of secreted proteins, were up-regulated, whereas during dioestrus particularly transcripts of genes involved in transcription regulation showed a slight up-regulation. The concentrations of seven selected transcripts were quantified by real-time RT-PCR to validate the cDNA array hybridisation data. For all seven transcripts, RT-PCR results were in excellent correlation (r>0.92) with the results obtained by array hybridisation. Our study is the first to analyse changes in gene expression profiles of bovine oviduct epithelial cells during different stages of the oestrous cycle, providing a starting point for the clarification of the key transcriptome changes in these cells.


BioTechniques ◽  
1996 ◽  
Vol 21 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Tamara Hiller ◽  
Linda Snell ◽  
Peter H. Watson

Sign in / Sign up

Export Citation Format

Share Document