scholarly journals Gonadal defects and hormonal alterations in transgenic mice expressing a single chain human chorionic gonadotropin–lutropin receptor complex

2005 ◽  
Vol 34 (2) ◽  
pp. 489-503 ◽  
Author(s):  
Thomas P Meehan ◽  
Barry G Harmon ◽  
Megan E Overcast ◽  
Kristine K Yu ◽  
Sally A Camper ◽  
...  

To study the effects of premature and chronic ligand-mediated luteinizing hormone receptor (LHR) activation on reproductive development, we have generated transgenic mice expressing a genetically engineered, constitutively active yoked hormone–receptor complex (YHR), in which a fusion protein of human chorionic gonadotropin (hCG) is covalently linked to the N-terminus of rat LHR. YHR-expressing mice (YHR+) were analyzed at pre- and post-pubertal ages. Relative to wild type (WT) controls, male mice exhibited prepubertal increases in testosterone levels and seminal vesicle weights, and decreases in serum FSH, serum LH, testes weight, and the size of the seminiferous tubules. In adult male YHR+ mice, testosterone and LH levels are not significantly different from WT controls. However, FSH levels and testes weights remain decreased. Female YHR+ mice undergo precocious puberty with early vaginal opening, accelerated uterine development, enhanced follicular development, including the presence of corpora lutea, and an increase in serum progesterone. At 12 weeks of age, the ovary exhibits a relative increase in the amount of interstitial tissue, comprised of cells that are hypertrophic and luteinized, as well as follicles that are degenerating. Additionally, hemorrhagic cysts develop in approximately 25% of the transgenic mice. These degenerative changes are consistent with an aging ovary suggesting that CG-induced LHR activation in female mice leads to precocious sexual development and ovarian lesions. Taken together, these data indicate that the single chain YHR is functional in vivo and demonstrate that YHR+ mice provide a novel system to further understand the reproductive consequences of aberrant LHR activation.

2003 ◽  
Vol 31 (1) ◽  
pp. 157-168 ◽  
Author(s):  
RL Schubert ◽  
D Puett

Human chorionic gonadotropin (hCG) is a member of the family of glycoprotein hormones containing a common alpha-subunit and distinct beta-subunits that confer hormonal specificity. hCG binds to the relatively large ectodomain of the human luteinizing hormone receptor (hLHR), a member of the G protein-coupled receptor superfamily, leading to increased intracellular production of cAMP. Using protein engineering, two miniaturized versions of hCGbeta have been separately fused to the N-terminus of the alpha-subunit to give N-des[1-91]hCGbeta-alpha-C and N-des[1-91,110-114]hCGbeta-alpha-C, i.e. fusion proteins of the hCGbeta determinant loop (extended to include the complete seat belt and carboxy-terminal peptide) coupled to the alpha-subunit. Bioactivity of these single-chain gonadotropin analogs was assessed in two systems following transient transfections into HEK 293 cells and subsequent cAMP measurements. In one, each mini-beta-alpha cDNA was fused to that of hLHR and transfected into cells to create yoked miniaturized hCG-hLHR complexes; in the other, the cDNA of each single chain mini-beta-alpha was co-transfected with that of hLHR in an effort to produce non-covalent miniaturized hCG-hLHR complexes. Using yoked hCG-hLHR and hLHR as positive and negative controls respectively, expression of each mini-hCG-hLHR complex was confirmed using antibody and ligand binding assays. The two mini-hCGs led to minimal activation of hLHR, suggesting weak intrinsic activity of the mini-beta-alpha fusion proteins. These results suggest that potent agonists and antagonists will require the presence of other portions of hCGbeta in addition to the determinant loop/seat belt.


Sign in / Sign up

Export Citation Format

Share Document