REGULATION OF THE METABOLISM OF PITUITARY NUCLEIC ACIDS IN FEMALE RATS

1980 ◽  
Vol 85 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J. BÍRÓ

SUMMARY Ovariectomy caused an increase in the metabolism of pituitary nucleic acids. This effect was reversed in vivo by a biphasic action of oestradiol-17β which first facilitated RNA metabolism after 8 h and then inhibited it 16 h after intraperitoneal injection. To analyse the origin of this biphasic effect the roles of LH releasing hormone (LH-RH) and hysterectomy were examined. Incorporation of uridine into the RNA of the anterior pituitary gland of female rats was inhibited both in vivo and in vitro by LH-RH. Hysterectomy augmented the increase in the RNA metabolism caused by ovariectomy whereas steroid-free uterine extracts inhibited the increase significantly. We have concluded that extrapituitary factors may be involved in the effects of oestrogen on the metabolism of pituitary nucleic acids.

1981 ◽  
Vol 90 (3) ◽  
pp. 345-354 ◽  
Author(s):  
KATHLEEN A. ELIAS ◽  
C. A. BLAKE

Changes at the anterior pituitary and/or hypothalamic levels which result in selective FSH release during late pro-oestrus in the cyclic rat were investigated. The possible involvement of decreasing serum concentrations of oestrogen during pro-oestrus in such changes was studied. Rats were decapitated at 12.00 h on pro-oestrus, before the onset of the LH surge and first phase of FSH release, or at 24.00 h on pro-oestrus, shortly after the onset of the second or selective phase of FSH release. Other rats were given oestrogen (OE2) at 14.00 h and killed at 24.00 h pro-oestrus. Paired hemi-anterior pituitary glands were incubated with vehicle or OE2 with or without synthetic LH-releasing hormone (LH-RH) or hypothalamic acid extracts prepared from rats killed at 12.00 or 24.00 h on pro-oestrus. At 24.00 h pro-oestrus, serum FSH concentration was high while serum LH concentration was low regardless of whether rats were given OE2. Glands collected and incubated at 24.00 h released more FSH and less LH than did glands collected and incubated at 12.00 h pro-oestrus. Administration of OE2 in vivo and/or in vitro did not affect these responses. The increments in LH and FSH release attributed to LH-RH or hypothalamic extracts in the glands incubated at 24.00 h were not different from those of the glands incubated at 12.00 h. Also, the hypothalamic extracts prepared from rats killed at 24.00 h were no more effective than the extracts prepared from rats killed at 12.00 h in releasing LH or FSH from glands incubated at 12.00 or 24.00 h pro-oestrus. Administration of OE2 in vivo caused a small suppression of LH-RH-induced FSH release. We suggest that a change occurs at the level of the anterior pituitary gland during the period of the LH surge and first phase of FSH release to increase basal FSH secretion selectively and cause, at least in part, the second phase of increased serum FSH. This change is not mediated by a decrease in serum oestrogen concentration. We failed to observe any evidence that LH-RH causes preferential FSH release during late pro-oestrus or that a hypothalamic peptide with a preferential FSH releasing ability is involved in FSH release at this time.


1983 ◽  
Vol 61 (2) ◽  
pp. 186-189 ◽  
Author(s):  
Noboru Fujihara ◽  
Masataka Shiino

The effect of thyrotrophin-releasing hormone (TRH, 10−7 M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone – releasing hormone (LH–RH, 10−7 M). Actinomycin D (2 × 10−5 M) and cycloheximide (10−4 M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).


1981 ◽  
Vol 90 (3) ◽  
pp. 433-436 ◽  
Author(s):  
S. FRANKS ◽  
G. R. MERRIAM ◽  
CYNTHIA G. GOODYER ◽  
F. NAFTOLIN

We have examined the effects of the catechol oestrogens 2-hydroxyoestradiol (2-OHE2), 4-hydroxyoestradiol (4-OHE2) and 2-hydroxyoestrone (2-OHE1) and their corresponding primary oestrogens on secretion of LH and FSH by enzymatically dispersed rat anterior pituitary cells in monolayer culture. Basal LH levels in the medium were significantly higher than in control wells when cells were exposed to 10−8m-oestradiol-17β for 40 h: oestrone and all three catechol oestrogens (in the same doses) also stimulated basal LH concentrations to levels quantitatively similar to those seen after oestradiol treatment. The same effects were observed when steroids were given at 10−9 mol/l. Oestradiol, 2-OHE2, and 4-OHE2 but not 2-OHE1 increased pituitary responsiveness to LH releasing hormone (LH-RH) (given in a range of doses from 10−11 to 10−6 mol/l). The responses of cells treated with 2-OHE2 and 4-OHE2 were similar, though less than the response seen after treatment with oestradiol. This contrasts with the very different oestrogenic effects of 2- and 4-OHE2 previously observed in vivo. Neither oestradiol nor the catechol oestrogens had any effect on basal or LH-RH-stimulated FSH release.


1981 ◽  
Vol 88 (3) ◽  
pp. 375-379
Author(s):  
J. DULLAART

Hemipituitary glands of immature female rats, aged 10, 15, 20, 25, 30 and 35 days and either ovariectomized or sham-operated 5 days earlier, were incubated for 2 h in vitro with or without LH releasing hormone. Concentrations of LH and FSH were determined at the end of the incubations in the incubation media and in the hemipituitary glands, and also in the sera collected at the beginning of the incubation experiments. Results showed that in many instances gonadotrophin release was higher after incubation of glands of ovariectomized rats than with glands of control animals. However, these effects of ovariectomy were much smaller than those observed in vivo and were generally absent in rats of less than 20 days of age. It was concluded that ovariectomy may change the secretory characteristics of the gonadotrophic cells of immature rats but that such changes were largely restricted to immature rats older than 20 days.


1986 ◽  
Vol 111 (2) ◽  
pp. 309-315 ◽  
Author(s):  
M. L. Vitale ◽  
M. N. Parisi ◽  
S. R. Chiocchio ◽  
J. H. Tramezzani

ABSTRACT The effects of serotonin (5-HT) on the release of gonadotrophins and LH-releasing hormone (LHRH) were examined in an in-vitro perifusion system using median eminences and/or anterior pituitaries obtained from male or pro-oestrous female rats. Animals were killed by decapitation between 12.00 and 13.00 h. A serial double-chamber perifusion system was employed. Three types of experiments were performed. In the first, median eminences were placed in the first chamber and one anterior pituitary in the second chamber. In the second group, only the anterior pituitary was perifused. In the third group, only five median eminences were perifused. In the first and second experiments, LH, FSH and prolactin were determined in the perifusion efflux by radioimmunoassay (RIA). In the third experiment, LHRH was determined by RIA. Addition of 5-HT (final concentrations 0·06, 0·6 and 6·0μmol/l) into the first chamber containing the median eminences stimulated the release of LH and FSH from the pituitary, but did not affect the levels of prolactin in the effluent in the same experiment (prooestrous rats). The stimulatory effect of 5-HT was blocked by the addition of cyproheptadine (1 μmol/l) in the perifusion fluid. The introduction of 5-HT (0·6 μmol/l) into the tube connecting the first and second chambers did not modify the release of LH, nor did 5-HT added to the pituitaries perifused alone. Injection of 5-HT into the first chamber (median eminences), containing tissue samples from male rats, stimulated LH release, but to a significantly (P< 0·001) lower degree than that found when samples from pro-oestrous females were used (P< 0·0001). When median eminences from pro-oestrous rats were perifused alone, injection of 5-HT produced an immediate release of LHRH which peaked during the first 10 min of collection and lasted for 30 min; in these experiments, a clear relationship existed between dose of 5-HT and release of LHRH (P<0·02). The stimulatory effect of 5-HT was blocked by the addition of cyproheptadine (5 μmol/l) or methiothepin (5 μmol/l). These results demonstrate that 5-HT stimulates gonadotrophin release by acting directly on LHRH terminals in the median eminence from pro-oestrous rats. Furthermore, the effect of 5-HT on LHRH release was dose dependent and was nullified by 5-HT receptor blockers (cyproheptadine and methiothepin). J. Endocr. (1986) 111, 309–315


1979 ◽  
Vol 80 (1) ◽  
pp. 141-152 ◽  
Author(s):  
A. D. SWIFT ◽  
D. B. CRIGHTON

The abilities of three nonapeptide analogues of synthetic luteinizing hormone releasing hormone (LH-RH) to release luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in anoestrous and cyclic ewes were examined, as were their elimination from the plasma in vivo and degradation by extracts of the hypothalamus, anterior pituitary gland, lung, kidney, liver and plasma in vitro. In all cases, comparisons were made with synthetic LH-RH. When injected i.v. into mature ewes as a single dose, the potencies of the analogues were graded and Des Gly-NH210 LH-RH ethylamide was found to be the least potent. It was not possible to demonstrate any significant increase in the potency of this analogue over LH-RH, although a trend was apparent with each parameter examined. [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide had the greatest potency. There were no differences between the responses of anoestrous ewes and those of ewes treated on day 10 of the oestrous cycle. None of the analogues had a rate of elimination from the plasma different from that of LH-RH during either the first or the second components of the biphasic disappearance curve. The incubation of LH-RH with tissue extracts showed that extracts of the hypothalamus and anterior pituitary gland degraded LH-RH to a similar extent. Both the hypothalamic and anterior pituitary gland extracts degraded more LH-RH than did lung extract, which in turn destroyed more LH-RH than did extracts of kidney or liver tissue. The degradative abilities of kidney and liver extracts did not differ from each other. Plasma failed to degrade LH-RH or the analogues. Although LH-RH was rapidly destroyed by hypothalamic extract in vitro, of the analogues, only Des Gly-NH210 LH-RH ethylamide was degraded. The anterior pituitary gland and kidney extracts failed to degrade [d-Ser6] Des Gly-NH210 LH-RH ethylamide and [d-Ser(But)6] Des Gly-NH210 LH-RH ethylamide as rapidly as LH-RH. Extracts of liver and lung were incapable of catabolizing any of the analogues. There was an inverse correlation between the LH- and FSH-releasing potency of an analogue and its rate of degradation by anterior pituitary gland extract. The slower rates of catabolism of certain analogues of LH-RH by the anterior pituitary gland may explain their increased LH- and FSH-releasing potency.


1982 ◽  
Vol 37 (2) ◽  
pp. 246-259 ◽  
Author(s):  
Karl Folkers ◽  
John Humphries ◽  
Cyril Y. Bowers

Abstract Detailed structure-activity studies on inhibitors of the luteinizing hormone releasing hormone (LH-RH) have been described. The most potent ovulation inhibitors have substitutions in positions 1, 2, 3, and 6. Currently four basic structural requirements for potent antiovulatory activity are: a D-aromatic amino acid, such as D-Trp or D-Phe, in position 6; a D-Phe residue in position 2; substitutions in positions 1 and 3. For inhibitors based on substitutions in positions 2, 3, and 6, the substitution of a Pro, N-Me-Leu or D-Trp residue in position 3 is equally acceptable, and gives analogues which inhibit ovulation at 750 ^g/rat. For inhibitors based on substitutions in positions 1, 2, 3, and 6, D-Trp appears necessary in position 3 in order for ovulation to be inhibited at 200 μ/rat. Many analogues based on the [residue1, D-Phe2, D-Trp3, D-Trp6]-LH-RH sequence are known which inhibit ovulation at 200 μ/rat. These include those analogues having D- <Glu, Ac-Pro, N-Ac-Hyp and N-Ac-Thr in position 1. The choice between L- or Dresidues in this position is structure dependent (Ac-L-Pro > Ac-D-Pro, D- <Glu >L- <Glu, etc.). In addition, a "protected" N-terminal residue having some polar character appears to be important. Substitution of the dipeptide residue, <Glu-Pro-, into position 1 has produced a new category of potent ovulation inhibitors based on linear peptides longer than decapeptides. Continued studies on other analogues in this later class could provide more potent inhibitors by (1) utilizing new binding sites on or in the vicinity of the LH-RH receptor(s); (2) altering transportation properties; (3) producing "pro-drugs". The substitution of N-Me-Leu into position 7 was not advantageous, presumably because of the presence of bulky D-aromatic amino acids in position 6. Nonapeptide ethylamide analogues also had very low antiovulatory potencies. The analogue [chlorambucil1, Leu2, Leu3, D-Ala6]-LH-RH acted as an agonist, but also inhibited in a modified assay in vitro. Comparative assays measuring the inhibition of LH-RH, and inhibition of ovulation have emphasized other factors of importance to inhibitor design. Although all ovulation inhibitors active at 750 or 200 /μg/rat strongly inhibited in vivo, at a ratio of analogue to LH-RH of 166:1, other analogues of comparable in vitro potency have displayed a range of antiovulatory activities. Similar discrepancies have been observed in the results of in vivo LH-RH inhibition assays. The most potent ovulation inhibitors always inhibited LH-RH at 333:1 in adult male chimpanzees, and at 100:1 in adult male rats. The dissociation of the results of the LH-RH and antiovulatory assays have been rationalized in two cases. The Cpc-analogues were active in inhibiting LH-RH in rats and in chimpanzees when given i.V., but were inactive in rats when given s.c. which is the mode of administration in the antiovulatory assay. The results for inhibition of LH-RH in vivo paralleled the results for inhibition of ovulation, and raised a question as to differences in absorption of peptides though the lipid layers of subcutaneous tissue. The reduced in vivo activities of the L-Trp3 analogues in both the LH-RH and antiovulatory assays suggest an increase in enzymatic inactivation for these compounds. [D-Phe2, Pro3, D-Phe6]-LH-RH can inhibit endogenous LH-RH in the Rhesus monkey and inhibit ovulation. Infusion of [D-Phe2, Pro3, D-Trp6]-LH-RH at 375 ^ug/day for 4 days from a s.c. implanted minipump completely inhibited ovulation in cycling female rats and decreased serum LH levels in castrated rats. In contrast with LH-RH or des-Gly10- [D-Ala6]-LH-RH ethylamide the Pro3 analogue did not block uterine implantation sites of mated rats, indicating a difference in the mechanism of contraception for LH-RH agonists and inhibitors


1991 ◽  
Vol 129 (1) ◽  
pp. 27-33 ◽  
Author(s):  
J. A. M. J. van Dieten ◽  
J. de Koning ◽  
G. P. van Rees

ABSTRACT When pituitary glands from intact female, but not from ovariectomized rats, are incubated for 8 h in medium TC199 without further additives, FSH is synthesized. This LHRH-independent (or autonomous) FSH synthesis is prevented when bovine follicular fluid (bFF) is added to the incubation medium. Results from preliminary experiments, however, indicate no clear autonomous FSH synthesis after long-term absence of LHRH. To investigate the regulatory mechanisms involved in autonomous FSH synthesis and release, pituitary glands (exposed to endogenous LHRH) and pituitary grafts (not exposed to endogenous LHRH) from intact and ovariectomized rats were incubated for 8 h in medium TC199. Total FSH content (FSH released plus FSH remaining in the tissue) was compared with that in non-incubated glands or grafts, giving an indication of FSH synthesis. In addition, some of the animals were given LHRH pulses for 40 h before incubation. When pituitary tissue was taken from intact female rats, FSH synthesis occurred in the animals' own glands and in grafts from LHRH-pretreated rats. No FSH synthesis was seen in ovariectomized rats with or without pretreatment with bFF and/or LHRH. However, when ovariectomized rats had been pretreated with oestrogen, FSH synthesis was measured in vitro after pulsatile LHRH treatment in vivo. The results indicate that autonomous FSH synthesis in vitro is dependent upon previous (in vivo) exposure of the glands to both oestrogen and LHRH. Journal of Endocrinology (1991) 129, 27–33


Sign in / Sign up

Export Citation Format

Share Document