GONADOTROPHIN RELEASE IN VITRO, IN THE PRESENCE AND ABSENCE OF LUTEINIZING HORMONE RELEASING HORMONE, BY PITUITARY GLANDS FROM OVARIECTOMIZED AND SHAM-OPERATED IMMATURE FEMALE RATS OF VARIOUS AGES

1981 ◽  
Vol 88 (3) ◽  
pp. 375-379
Author(s):  
J. DULLAART

Hemipituitary glands of immature female rats, aged 10, 15, 20, 25, 30 and 35 days and either ovariectomized or sham-operated 5 days earlier, were incubated for 2 h in vitro with or without LH releasing hormone. Concentrations of LH and FSH were determined at the end of the incubations in the incubation media and in the hemipituitary glands, and also in the sera collected at the beginning of the incubation experiments. Results showed that in many instances gonadotrophin release was higher after incubation of glands of ovariectomized rats than with glands of control animals. However, these effects of ovariectomy were much smaller than those observed in vivo and were generally absent in rats of less than 20 days of age. It was concluded that ovariectomy may change the secretory characteristics of the gonadotrophic cells of immature rats but that such changes were largely restricted to immature rats older than 20 days.

1991 ◽  
Vol 129 (1) ◽  
pp. 27-33 ◽  
Author(s):  
J. A. M. J. van Dieten ◽  
J. de Koning ◽  
G. P. van Rees

ABSTRACT When pituitary glands from intact female, but not from ovariectomized rats, are incubated for 8 h in medium TC199 without further additives, FSH is synthesized. This LHRH-independent (or autonomous) FSH synthesis is prevented when bovine follicular fluid (bFF) is added to the incubation medium. Results from preliminary experiments, however, indicate no clear autonomous FSH synthesis after long-term absence of LHRH. To investigate the regulatory mechanisms involved in autonomous FSH synthesis and release, pituitary glands (exposed to endogenous LHRH) and pituitary grafts (not exposed to endogenous LHRH) from intact and ovariectomized rats were incubated for 8 h in medium TC199. Total FSH content (FSH released plus FSH remaining in the tissue) was compared with that in non-incubated glands or grafts, giving an indication of FSH synthesis. In addition, some of the animals were given LHRH pulses for 40 h before incubation. When pituitary tissue was taken from intact female rats, FSH synthesis occurred in the animals' own glands and in grafts from LHRH-pretreated rats. No FSH synthesis was seen in ovariectomized rats with or without pretreatment with bFF and/or LHRH. However, when ovariectomized rats had been pretreated with oestrogen, FSH synthesis was measured in vitro after pulsatile LHRH treatment in vivo. The results indicate that autonomous FSH synthesis in vitro is dependent upon previous (in vivo) exposure of the glands to both oestrogen and LHRH. Journal of Endocrinology (1991) 129, 27–33


1977 ◽  
Vol 74 (1) ◽  
pp. 11-21 ◽  
Author(s):  
M. WILKINSON ◽  
D. DE ZIEGLER ◽  
DANIELLE CASSARD ◽  
K. B. RUF

The effects of oestrogen priming on the sensitivity of the anterior pituitary gland to stimulation with gonadotrophin releasing hormone (GnRH) was investigated in immature female rats using a new organ culture technique. Hemipituitary glands obtained from animals primed with a single dose of oestradiol benzoate (OB; 20 μg/100 g body weight) released significantly more LH when pulsed with GnRH (4 nmol/l) than did control hemipituitary glands. This potentiating effect was detectable as early as 5 days after birth. After a second stimulation, LH secretion remained high. These results were compared with those obtained from animals treated to induce increased levels of endogenous oestrogen on day 26 of life. Thus, hemipituitary glands were obtained from animals given two injections of OB, an injection of pregnant mare serum gonadotrophin (PMSG) or a unilateral brain lesion placed in the basal hypothalamus. Pituitary tissue was stimulated as before with a pulse of GnRH. Two injections of OB enhanced the sensitivity to stimulation. Conversely, both PMSG and lesion treatment severely reduced the sensitivity to GnRH, although PMSG-treated and lesioned animals have been used as models for the study of ovulation.


1980 ◽  
Vol 85 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J. BÍRÓ

SUMMARY Ovariectomy caused an increase in the metabolism of pituitary nucleic acids. This effect was reversed in vivo by a biphasic action of oestradiol-17β which first facilitated RNA metabolism after 8 h and then inhibited it 16 h after intraperitoneal injection. To analyse the origin of this biphasic effect the roles of LH releasing hormone (LH-RH) and hysterectomy were examined. Incorporation of uridine into the RNA of the anterior pituitary gland of female rats was inhibited both in vivo and in vitro by LH-RH. Hysterectomy augmented the increase in the RNA metabolism caused by ovariectomy whereas steroid-free uterine extracts inhibited the increase significantly. We have concluded that extrapituitary factors may be involved in the effects of oestrogen on the metabolism of pituitary nucleic acids.


1977 ◽  
Vol 74 (1) ◽  
pp. 99-109 ◽  
Author(s):  
D. DE ZIEGLER ◽  
M. WILKINSON ◽  
DANIELLE CASSARD ◽  
K. B. RUF

An investigation of pituitary sensitivity, assessed in terms of increments in plasma LH and FSH concentrations, to stimulation with one or two injections of gonadotrophin releasing hormone (GnRH) was carried out on 26-day-old immature female rats which had received one of the following priming treatments: 10 μg oestradiol benzoate (OB) as a single injection on day 23 or day 25, or on both days; 10 i.u. pregnant mare serum gonadotrophin (PMSG) on day 24; an electrochemical brain lesion placed in the mediobasal hypothalamus on day 23; control animals received either vehicle alone or a sham lesion. Pituitary sensitivity assessed at 10.00 h on day 26, after one or two injections of GnRH (100 ng/100 g body weight, s.c.), was enhanced to a similar degree in the three groups treated with OB in terms of LH (P < 0-01). The FSH response also increased after OB treatment but was not statistically significant. In contrast, 48 h after the injection of PMSG (i.e. when the rats were in a 'pro-oestrous-like' condition) pituitary sensitivity in terms of both LH and FSH dropped sharply (P < 0·001). In lesioned animals, pituitary sensitivity to one injection of GnRH was unchanged. A second GnRH injection administered after a 60 min interval induced a slightly larger LH response in control animals. In contrast, the ratio of the second response to the first increased in animals treated with PMSG, despite the state of overall decrease in sensitivity, being 4·5:1 in PMSG-treated rats versus 1·4:1 in controls. In a second set of experiments, we investigated the variation of pituitary sensitivity in conjunction with an experimentally induced gonadotrophin surge. In animals treated with OB on day 23 and with 1 mg progesterone at 12·00 h on day 26, pituitary sensitivity was increased at both 14.00 and 17.00 h as compared with that in the day 23 OB-treated group at 10.00 h. The PMSG-treated animals maintained their state of decreased responsiveness at 14.00 h, but exhibited increased pituitary sensitivity at the time of the gonadotrophin surge (17.00 h). These results show that OB increases pituitary sensitivity to GnRH in 26-day-old female rats and that the induction of a gonadotrophin surge further increases this sensitivity. In contrast, PMSG-treated rats displayed a state of decreased responsiveness 48 and 52 h, but not 55 h, after the injection. Pituitary sensitivity on the second day after PMSG treatment thus clearly differs from that observed during pro-oestrus in the adult cyclic female rat.


1961 ◽  
Vol 36 (4) ◽  
pp. 485-497 ◽  
Author(s):  
G. P. van Rees

ABSTRACT The hypothesis that steroid sex hormones influence pituitary F. S. H. by independent actions on its production and capacity of the gland to release it has been investigated by means of incubation experiments. During incubation, rat pituitary glands released considerable amounts of F. S. H. into the medium. Inactivation of F. S. H. during incubation could not be demonstrated; once (in females) some production of F. S. H. was even observed. The amount of F. S. H. which is released into the medium is influenced by the quantity of F. S. H. stored in the hypophyses. Hypophyses from male rats pretreated with oestradiol released relatively more F. S. H. into the medium than hypophyses from control animals. On the other hand, pretreatment with testosterone caused the pituitary glands to release less F. S. H. into the medium. In agreement with these results, hypophyses from intact male rats released relatively less F. S. H. than hypophyses from intact female rats. These facts support the hypothesis that androgens depress pituitary F. S. H.-secretion by inhibiting the capacity to release it, while oestrogens, which can even promote this property of the pituitary gland, also act by directly inhibiting its production.


2005 ◽  
Vol 82 (5-6) ◽  
pp. 245-255 ◽  
Author(s):  
Rafael Fernández-Fernández ◽  
Manuel Tena-Sempere ◽  
Víctor M. Navarro ◽  
María L. Barreiro ◽  
Juan M. Castellano ◽  
...  

1999 ◽  
Vol 277 (1) ◽  
pp. E49-E55 ◽  
Author(s):  
Shiow-Chwen Tsai ◽  
Chien-Chen Lu ◽  
Jiann-Jong Chen ◽  
Yu-Chung Chiao ◽  
Shyi-Wu Wang ◽  
...  

The effects of salmon calcitonin (sCT) on the production of progesterone and secretion of luteinizing hormone (LH) were examined in female rats. Diestrous rats were intravenously injected with saline, sCT, human chorionic gonadotropin (hCG), or hCG plus sCT. Ovariectomized (Ovx) rats were injected with saline or sCT. In the in vitro experiments, granulosa cells and anterior pituitary glands (APs) were incubated with the tested drugs. Plasma LH levels of Ovx rats were reduced by sCT injection. Administration of sCT decreased the basal and hCG-stimulated progesterone release in vivo and in vitro. 8-Bromo-cAMP dose dependently increased progesterone production but did not alter the inhibitory effect of sCT. H-89 did not potentiate the inhibitory effect of sCT. Higher doses of 25-hydroxycholesterol and pregnenolone stimulated progesterone production and diminished the inhibitory effects of sCT. sCT did not decrease basal release of LH by APs, but pretreatment of sCT decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. These results suggested that sCT inhibits progesterone production in rats by preventing the stimulatory effect of GnRH on LH release in rat APs and acting directly on ovarian granulosa cells to decrease the activities of post-cAMP pathway and steroidogenic enzymes.


1985 ◽  
Vol 107 (1) ◽  
pp. 9-13 ◽  
Author(s):  
S. E. Inkster ◽  
R. N. Clayton ◽  
S. A. Whitehead

ABSTRACT The effects of neonatal monosodium l-glutamate (MSG) treatment on pituitary responsiveness to LH-releasing hormone (LHRH) and on pituitary LHRH receptors have been investigated in the intact adult female rat. Three- to four-month-old rats treated with MSG (4 mg/g body wt) on days 2, 4, 6, 8 and 10 after birth had significantly reduced ovarian and pituitary weights, showed an absence or disruption of ovarian cyclicity after puberty, and had significantly higher concentrations of serum prolactin despite normal levels of LH. In-vitro pituitary LH responses to LHRH were in the normal range for one group of treated animals whilst in a second group the LH responses were markedly enhanced. In contrast, the total number of pituitary LHRH receptors were significantly reduced in all MSG-treated animals showing that the increased pituitary responsiveness of MSG-treated animals is not attributable to an increase in pituitary LHRH receptors. J. Endocr. (1985) 107, 9–13


Sign in / Sign up

Export Citation Format

Share Document