Vasoactive intestinal peptide, but not pituitary adenylate cyclase-activating peptide, modulates the responsiveness of the gonadotroph to LHRH in man

1993 ◽  
Vol 137 (3) ◽  
pp. 529-532 ◽  
Author(s):  
P. J. Hammond ◽  
K. Talbot ◽  
R. Chapman ◽  
M. A. Ghatei ◽  
S. R. Bloom

ABSTRACT Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are hypothalamic peptides sharing considerable sequence homology which are postulated to be hypophysiotrophic releasing factors. When infused into man, PACAP has no effect on anterior pituitary hormone levels, while VIP causes a significant increase in circulating prolactin concentrations. However, PACAP has recently been shown to augment the release of LH and FSH in response to LHRH in rat anterior pituitary cell culture. In order to ascertain if either peptide has a similar effect in man, PACAP and VIP were infused at 3·6 pmol/kg per min into six healthy male volunteers, and an LHRH test was performed 30 min after the infusion was commenced. Infusion of PACAP did not alter the gonadotrophin response to LHRH significantly. However, VIP augmented the release of LH significantly, both during the infusion and for 30 min thereafter, although there was no effect on FSH release. Thus VIP, but not PACAP, potentiates the release of LH after LHRH injection in man. Journal of Endocrinology (1993) 137, 529–532

2002 ◽  
Vol 163 (1) ◽  
pp. 95-101 ◽  
Author(s):  
Cornelius Schüle ◽  
Thomas Baghai ◽  
Josefine Goy ◽  
Martin Bidlingmaier ◽  
Christian Strasburger ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Junpei Yamashita ◽  
Yuji Nishiike ◽  
Thomas Fleming ◽  
Daichi Kayo ◽  
Kataaki Okubo

AbstractThe preoptic area (POA) is one of the most evolutionarily conserved regions of the vertebrate brain and contains subsets of neuropeptide-expressing neurons. Here we found in the teleost medaka that two neuropeptides belonging to the secretin family, pituitary adenylate cyclase-activating polypeptide (Pacap) and vasoactive intestinal peptide (Vip), exhibit opposite patterns of sexually dimorphic expression in the same population of POA neurons that project to the anterior pituitary: Pacap is male-biased, whereas Vip is female-biased. Estrogen secreted by the ovary in adulthood was found to attenuate Pacap expression and, conversely, stimulate Vip expression in the female POA, thereby establishing and maintaining their opposite sexual dimorphism. Pituitary organ culture experiments demonstrated that both Pacap and Vip can markedly alter the expression of various anterior pituitary hormones. Collectively, these findings show that males and females use alternative preoptic neuropeptides to regulate anterior pituitary hormones as a result of their different estrogen milieu.


1942 ◽  
Vol 75 (5) ◽  
pp. 547-566 ◽  
Author(s):  
B. A. Houssay ◽  
V. G. Foglia ◽  
F. S. Smyth ◽  
C. T. Rietti ◽  
A. B. Houssay

The ability of the pancreas, from various types of dogs, to correct diabetic hyperglycemia has been studied (Table XI). The pancreas from one animal was united by a vascular union with the neck blood vessels of another dog which had been pancreatectomized for 20 hours. The time necessary to reduce the blood sugar level to 120 mg. per cent was determined. 1. Pancreas from 6 hypophysectomized dogs produced a normal insulin secretion, showing that an anterior pituitary hormone is not necessary for its production or maintenance. 2. In 14 of 17 normal dogs given anterior pituitary extract for 3 or more consecutive days and presenting diabetes (fasting blood sugar 150 mg. per cent or more) the pancreas showed diminished insulin production. 3. In animals which remained diabetic after discontinuing the injections of hypophyseal extract, the pancreas islands were markedly pathologic and the insulin secretion was practically nil. 4. When hyperglycemia existed on the 2nd to 5th day but fell later, the insulin secretion of 5 dogs was normal in 2, supernormal in 1, and less than normal in 2. Histologic examination showed a restoration of beta cells. 5. In 14 dogs resistant to the diabetogenic action of anterior pituitary extract, as shown by little or no change in blood sugar, the pancreatic secretion of insulin was normal in 6 cases, supernormal in 3, and subnormal in 5 cases. Clear signs of hyperfunction of B cells were observed. In 6 resistant animals a high blood sugar (150 mg. per cent) appeared shortly before transplanting, but insulin secretion was normal in 4, supernormal in 1, and subnormal in 1 case. 6. With one injection of extract and 1 day of hyperglycemia the capacity of the pancreas to secrete insulin was not altered. 7. A high blood sugar level lasting 4 days does not alter the islets. The hypophyseal extract acts, therefore, by some other mechanism. In normal dogs, the continuous intravenous infusion of glucose for 4 days maintained the blood sugar at levels as high as those after pituitary extract. In these animals the B cells were hyperplastic and insulin secretion normal. 8. Anterior hypophyseal hyperglycemia is due at first to extrapancreatic factors which are the most important, and last only during the injections of extracts. Pancreatic factors appear afterwards and are responsible for permanent diabetes. Hypophyseal extract produces histological changes in many tissues and damages the Langerhans islands. The coexistent high blood sugar probably exhausts the B cells and exaggerates their injury. 9. In all cases there is a relation between the cytology of the islet B cells and the insulin secreting capacity.


2021 ◽  
pp. 1-9
Author(s):  
Elisa Vaiani ◽  
Guido Felizzia ◽  
Fabiana Lubieniecki ◽  
Jorge Braier ◽  
Alicia Belgorosky

Langerhans cell histiocytosis (LCH) is a disorder of the mononuclear phagocyte system that can affect almost any organ and system. The most common central nervous system (CNS) manifestation in LCH is the infiltration of the hypothalamic-pituitary region leading to destruction and neurodegeneration of CNS tissue. The latter causes the most frequent endocrinological manifestation, that is, central diabetes insipidus (CDI), and less often anterior pituitary hormone deficiency (APD). The reported incidence of CDI is estimated between 11.5 and 24% and is considered a risk factor for neurodegenerative disease and APD. Three risk factors for development of CDI are recognized in the majority of the studies: (1) multisystem disease, (2) the occurrence of reactivations or active disease for a prolonged period, and (3) the presence of craniofacial bone lesions. Since CDI may occur as the first manifestation of LCH, differential diagnosis of malignant diseases like germ cell tumours must be made. APD is almost always associated with CDI and can appear several years after the diagnosis of CDI. Growth hormone is the most commonly affected anterior pituitary hormone. Despite significant advances in the knowledge of LCH in recent years, little progress has been made in preventing long-term sequelae such as those affecting the hypothalamic-pituitary system.


2000 ◽  
Vol 78 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Anderson OL Wong ◽  
Wen Sheng Li ◽  
Eric KY Lee ◽  
Mei Yee Leung ◽  
Lai Yin Tse ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPAC1 receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.Key words: PACAP, VIP, PAC1 receptor, VPAC1 receptor, VPAC2 receptor, growth hormone, gonadotropin-II, cAMP, protein kinase A, protein kinase C, calcium, pituitary cells, goldfish, and teleost.


2005 ◽  
Vol 22 (9) ◽  
pp. 937-946 ◽  
Author(s):  
Manfred Schneider ◽  
Harald Jörn Schneider ◽  
Günter Karl Stalla

Sign in / Sign up

Export Citation Format

Share Document