Nutritional regulation of insulin-like growth factor-I mRNA expression in salmon tissues

1993 ◽  
Vol 139 (2) ◽  
pp. 243-252 ◽  
Author(s):  
C. Duan ◽  
E. M. Plisetskaya

ABSTRACT In salmonids, nutritional insufficiency leads to retarded growth and reduced hepatic GH receptors, but increased circulating GH levels. To understand the endocrine mechanism underlying the retarded growth in starved fish better, we investigated the effect of food deprivation and refeeding on circulating levels of GH and insulin, as well as insulin-like growth factor-I (IGF-I) mRNA expression in different tissues of juvenile coho salmon (Oncorhynchus kisutch). Deprivation of food for 2–4 weeks resulted in cessation of growth and a significant decrease in condition factor (an indicator of fish body shape). No difference in circulating insulin or glucose levels were found between starved and fed fish, whereas starvation increased the plasma GH levels. After 4 weeks of starvation, the plasma GH level rose to 9 ng/ml, which was four times as high as that of the fed fish. In spite of elevated circulating GH, hepatic IGF-I mRNA levels were significantly reduced after 4 weeks of starvation. No significant difference in IGF-I mRNA levels of fed and starved fish was found in other tissues, including kidney, spleen, ovary, gill filament and gut. Two weeks of refeeding significantly increased hepatic IGF-I mRNA levels and growth and reduced plasma GH levels. These results suggest that food deprivation primarily reduces IGF-I mRNA expression in the liver which results, most probably, in a decline in systemic IGF-I levels and consequently leads to the retarded growth of salmon. Journal of Endocrinology (1993) 139, 243–252

1996 ◽  
Vol 319 (2) ◽  
pp. 455-461 ◽  
Author(s):  
Simon S WING ◽  
Nathalie BEDARD

Upon fasting, the ubiquitin-dependent proteolytic system is activated in skeletal muscle in parallel with the increases in rates of proteolysis. Levels of mRNA encoding the 14 kDa ubiquitin-conjugating enzyme (E214k), which can catalyse the first irreversible reaction in this pathway, rise and fall in parallel with the rates of proteolysis [Wing and Banville (1994) Am. J. Physiol. 267, E39-E48], indicating that the conjugation of ubiquitin to proteins is a regulated step. To characterize the mechanisms of this regulation, we have examined the effects of insulin, insulin-like growth factor I (IGF-I) and des(1–3) insulin-like growth factor I (DES-IGF-I), which does not bind IGF-binding proteins, on E214k mRNA levels in L6 myotubes. Insulin suppressed levels of E214k mRNA with an IC50 of 4×10-9 M, but had no effects on mRNAs encoding polyubiquitin and proteasome subunits C2 and C8, which, like E214k, also increase in skeletal muscle upon fasting. Reduction of E214k mRNA levels was more sensitive to IGF-I with an IC50 of approx. 5×10-10 M. During the incubation of these cells for 12 h there was significant secretion of IGF-I-binding proteins into the medium. DES-IGF-I, which has markedly reduced affinity for these binding proteins, was found to potently reduce E214k mRNA levels with an IC50 of 3×10-11 M. DES-IGF-I did not alter rates of transcription of the E214k gene, but enhanced the rate of degradation of the 1.2 kb mRNA transcript. The half-life of the 1.2 kb transcript was approximately one-third that of the 1.8 kb transcript and can explain the more marked regulation of this transcript observed previously. This indicates that the additional 3´ non-coding sequence in the 1.8 kb transcript confers stability. These observations suggest that IGF-I is an important regulator of E214k expression and demonstrate, for the first time, stimulation of degradation of a specific mRNA transcript by this hormone, while overall RNA accumulates.


1993 ◽  
Vol 139 (1) ◽  
pp. 143-152 ◽  
Author(s):  
S. T. Charlton ◽  
J. R. Cosgrove ◽  
D. R. Glimm ◽  
G. R. Foxcroft

ABSTRACT The effects of feed restriction and refeeding on ovarian and hepatic insulin-like growth factor-I (IGF-I) gene expression, systemic and ovarian IGF-I concentrations and on associated metabolic changes were measured in prepubertal gilts. Eleven pairs of littermate gilts (70·7 ± 4·7 kg) were placed on a maintenance level of feeding for 7 days (days 1–7). On day 8, littermates were either fed at a maintenance level of energy or fed to appetite for a further 6 days. Blood samples were taken on day 13 (07.00–16.00 h) to determine plasma insulin and IGF-I, and on day 14 (02.00–06.00 h) to determine plasma GH levels. Following slaughter on day 14, one ovary from each animal was retained to measure follicular fluid IGF-I and oestradiol concentrations. The remaining ovary and a sample of liver were retained for IGF-I mRNA analysis using a ribonuclease protection assay. Six days of refeeding significantly increased plasma IGF-I (P<0·005) and basal insulin (P<0·05) but there was no effect on plasma GH. Ovarian follicular volume and diameter were significantly larger after refeeding (P<0·05), with no effect on follicular fluid oestradiol concentrations. Mean follicular fluid IGF-I concentrations were unaffected by treatment. However, the relationships between individual follicular IGF-I concentrations, absolute follicular fluid IGF-I contents and follicle volume were affected by feeding level (P<0·05). Regression analysis of the same data also revealed that at this stage of maturity, small follicles had greater follicular fluid concentrations of IGF-I than larger follicles. Refeeding increased the amount of IGF-I mRNA in hepatic but not ovarian tissue. We conclude that there is differential regulation of the IGF-I gene in porcine hepatic and ovarian tissues, and that ovarian factors other than, or as well as, IGF-I are involved in the regulation of ovarian responses to refeeding. Journal of Endocrinology (1993) 139, 143–152


1995 ◽  
Vol 146 (2) ◽  
pp. 239-245 ◽  
Author(s):  
J M Brameld ◽  
P A Weller ◽  
J C Saunders ◽  
P J Buttery ◽  
R S Gilmour

Abstract The effects of various hormones commonly added to hepatocyte culture media upon the expression of the GH receptor (GHR) and insulin-like growth factor-I (IGF-I) genes in cultured porcine hepatocytes were investigated. Preliminary investigations indicated that there was an absolute requirement only for insulin, with high losses of cell viability upon long term exclusion of insulin from the culture medium. The decline in GHR expression with time in culture was found to be less when high levels of glucose were included in the medium. Therefore the basal culture medium used in these studies was Williams' medium E supplemented with 0·2% (w/v) BSA, 5000 mg glucose/l and 100 nmol porcine insulin/l. The addition of dexamethasone (100 nmol/l) increased the expression of both GHR and IGF-I (class 1 transcripts only) mRNA (P<0·001 and P<0·05 respectively), and resulted in an increased responsiveness of IGF-I mRNA expression to GH (1 μg/ml), when the two were added in combination (although only class 1 transcripts were shown to be statistically significant, P<0·01). The addition of either thyroid hormone (1 nmol/l T3 or T4) alone also increased the expression of GHR mRNA (P<0·01) in addition to the dexamethasone stimulated expression, with T4 appearing to decrease IGF-I expression slightly (P<0·05) (either on its own or with T3). As with dexamethasone, the thyroid hormones increased the response of IGF-I mRNA expression to GH (1 μg/ml) when added in combination with GH (P<0·001). These observations demonstrate one possible mechanism for the interactions of glucocorticoids and thyroid hormones with the GH–IGF axis. Journal of Endocrinology (1995) 146, 239–245


2013 ◽  
Vol 111 (2) ◽  
pp. 201-206 ◽  
Author(s):  
Chao Wen ◽  
Ping Wu ◽  
Yueping Chen ◽  
Tian Wang ◽  
Yanmin Zhou

The present study aimed to investigate the responses of broilers with different hatching weights (HW) to dietary methionine (Met). A total of 192 1-d-old Arbor Acres broiler chicks with different HW (heavy: 48·3 (sem 0·1) g and light: 41·7 (sem 0·1) g) were allocated to a 2 (HW) × 2 (Met) factorial arrangement with six replicates of eight chicks. Control starter (1–21 d) and finisher (22–42 d) diets contained 0·50 and 0·43 % Met, respectively. Corresponding values for a high-Met treatment were 0·60 and 0·53 %. Light chicks had poorer (P< 0·05) growth performance and breast muscle weight and lower (P< 0·05) insulin-like growth factor-I (IGF-I) concentration and mRNA level in breast muscle than heavy chicks when both were fed the control diets. High-Met diets improved performance and promoted breast muscle growth and IGF-I concentration in light chicks (P< 0·05). Increased IGF-I and target of rapamycin (TOR) mRNA levels as well as decreased eIF4E-binding protein 1 (4EBP1), atrogin-1 and forkhead box O 4 (FOXO4) mRNA levels were induced by high-Met diets in light chicks (P< 0·05). In conclusion, the Met requirement of broilers might depend on their HW and Met levels used in the control diets in the present study were adequate for heavy chicks but inadequate for light chicks, resulting in poorer performance and breast muscle growth, which were improved by increasing dietary Met supply presumably through alterations in IGF-I synthesis and gene expression of the TOR/4EBP1 and FOXO4/atrogin-1 pathway.


1995 ◽  
Vol 132 (5) ◽  
pp. 605-610 ◽  
Author(s):  
Lorenz C Hofbauer ◽  
Michael Rafferzeder ◽  
Onno E Janssen ◽  
Roland Gärtner

Hofbauer LC, Rafferzeder M, Janssen OE, Gartner R. Insulin-like growth factor I messenger ribonucleic acid expression in porcine thyroid follicles is regulated by thyrotropin and iodine. Eur J Endocrinol 1995;132:605–10. ISSN 0809–4643 Insulin-like growth factor I (IGF-I) has been shown to be released from thyrocytes in vitro. We investigated IGF-I mRNA expression during treatment with thyrotropin (TSH), forskolin and potassium iodide (KI) in intact porcine thyroid follicles ex vivo. Porcine thyroid follicles were prepared by collagenase digestion and cultured in the presence of TSH, forskolin or KI. After different incubation times, mRNA was isolated and examined by Northern hybridization with a porcine IGF-I cDNA probe of 405 bp in length. In untreated follicles no IGF-I mRNA was found, whereas in follicles stimulated with TSH an IGF-I mRNA of 7.0 kb was detected after 24 h, which persisted for another 24 h. Forskolin treatment mimicked the TSH effect, indicating that IGF-I mRNA expression may be stimulated by the adenylate cyclase pathway. Preincubation of the porcine follicles with KI decreased dose dependently the TSH-induced IGF-I mRNA expression, with complete inhibition at 10 μmol/l KI. These results suggest that TSH acts via the cAMP pathway to enhance IGF-I mRNA expression, which then may lead to an autocrine IGF-I stimulation. The IGF-I mRNA expression is under negative control of iodide. Roland Gärtner, Medizinische Klinik, Ludwig Maximilians University, Ziemssenstrasse 1, 80336 München, Germany


Sign in / Sign up

Export Citation Format

Share Document